TALLINNA TEHNIKAÜLIKOOL INFOTEHNOLOOGIA TEADUSKOND Arvutitehnika instituut Süsteemitarkvara õppetool Eesnimi Perekonnanimi 000000IASB IAG0581 Programmeerimine I FUNKTSIOONI TABULLEERIMINE Kodutöö nr.1 Juhendaja: dotsent Vladimir Viies Tallinn 2011 Autorideklaratsioon Kinnitan, et käesolev töö on minu töö tulemus ja seda ei ole minu ega kellegi teise poolt varem esitatud. Eesnimi Perekonnanimi Sisukord
TALLINNA TEHNIKAÜLIKOOL INFOTEHNOLOOGIA TEADUSKOND Arvutitehnika instituut Funktsiooni tabulleerimine Juhendaja: Margit Aarna Teadur Tallinn 2011 Autorideklaratsioon Kinnitan, et käesolev töö on minu töö tulemus ja seda ei ole minu ega kellegi teise poolt varem esitatud. 2 Sisukord Ülesande püstitus..........
TALLINNA TEHNIKAÜLIKOOL INFOTEHNOLOOGIA TEADUSKOND Arvutitehnika instituut Süsteemitarkvara õppetool 121055IASB IAG0081 Programmeerimine I FUNKTSIOONI TABULLEERIMINE Kodutöö nr.1 Juhendaja: dotsent Vladimir Viies Margit Aarna Koostaja: Peeter Sikk Tallinn 2012 Autorideklaratsioon Kinnitan, et käesolev töö on minu töö tulemus ja seda ei ole minu ega kellegi teise poolt varem esitatud.
TALLINNA TEHNIKAÜLIKOOL INFOTEHNOLOOGIA TEADUSKOND Arvutitehnika instituut Süsteemitarkvara õppetool 121055IASB IAG0081 Programmeerimine I MASSIIVID Kodutöö nr.2, varjant 664 Juhendaja: dotsent Vladimir Viies Margit Aarna Koostaja: Peeter Sikk Tallinn 2012 Autorideklaratsioon Kinnitan, et käesolev töö on minu töö tulemus ja seda ei ole minu ega kellegi teise poolt varem esitatud.
f(x) Arvutamist tükkel kordub kuni (a+(k-1)*h) < b kus k on x väärtuse positsioon.
Oma programmis kasutasin for, do while ja while tsüklid ning veel ka if funktsioon.
Graafik
Algoritm
Programm
#include
#include
//lesanne
// 1. klaviatuurilt sisestatakse tippude arv N(1<=N<=10) ja nende koordinaatide
reaalarvulised massiivid X ja Y
// 2. ekraanile vljastatakse antud hulknurga klgede pikkuste reaalarvuline
massiiv L.
#include
Variant R-26
Rekursioon
Koostada algoritm ja sellele vastav programm (C- või Java-keeles),
mille abil:
1. klaviatuurilt sisestatakse reaalarvulised X (X<1) ja (0<<1);
2. rekursiivse funktsiooni abil moodustatakse reaalarvuline massiiv A
elementidega
A0 = 1,
A1 = X2/2!,
A2 = X4/4!,
. . .
kuni massiivi A elementide arv L kas vastab tingimusele AL AL 1 või
(kui see tingimus ei ole rahuldatud) L = 15;
3. faili F väljastatakse massiivi A elementide arv L ning elemendid
koos indeksitega.
Programmi kood C keeles
#include
TARTU ÜLIKOOLI TEADUSKOOL PROGRAMMEERIMISE ALGKURSUS 2005-2006 Sisukord KURSUSE TUTVUSTUS: Programmeerimise algkursus.........................................6 Kellele see algkursus on mõeldud?..................................................................6 Mida sellel kursusel ei õpetata?.......................................................................6 Mida selle kursusel õpetatakse?......................................................................6 Kuidas õppida?.................................................................................................7 Mis on kompilaator?.............................................................................................8 Milliseid kompilaatoreid kasutada ja kust neid saab?......................................8 Millist keelt valida?...........................................................................................8 ESIMENE TEEMA: sissejuhatav sõnavõtt ehk 'milleks on v
TALLINNA TEHNIKAÜLIKOOL INFOTEHNOLOOGIA TEADUSKOND Arvutitehnika instituut Süsteemitarkvara õppetool Risto Olavi Rantanen 123366MAHB IAG0581 Programmeerimine I FUNKTSIOONI TABULLEERIMINE Kodutöö nr.2 Juhendaja: dotsent Vladimir Viies Tallinn 2013 Autorideklaratsioon Kinnitan, et käesolev töö on minu töö tulemus ja seda ei ole minu ega kellegi teise poolt varem esitatud. Risto Olavi Rantanen Sisukord Ülesande püstitus
TALLINNA TEHNIKAÜLIKOOL INFOTEHNOLOOGIA TEADUSKOND Arvutitehnika instituut Massiivid Juhendaja: Margit Aarna Teadur Tallinn 2011 Autorideklaratsioon Kinnitan, et käesolev töö on minu töö tulemus ja seda ei ole minu ega kellegi teise poolt varem esitatud. 2 Sisukord Ülesande püstitus..........................
Programmeerimise algkursus 1 - 89 Mida selle kursusel õpetatakse?...................................................................................................3 SISSEJUHATAV SÕNAVÕTT EHK 'MILLEKS ON VAJA PROGRAMMEERIMIST?'......3 PROGRAMMEERIMISE KOHT MUUDE MAAILMA ASJADE SEAS.............................3 PROGRAMMEERIMISKEELTE ÜLDINE JAOTUS ..........................................................7 ESIMESE TEEMA KOKKUVÕTE........................................................................................8 ÜLESANDED......................................................................................................................... 8 PÕHIMÕISTED. OMISTAMISLAUSE. ...................................................................................9 ................................................................................................................................................. 9 SISSEJUHATUS.......
RAKENDUSLIK SÜSTEEMITEOORIA 2012 EKSAMIKÜSIMUSED 1. Süsteemiteooria põhilised mõisted (süsteem, elemendid, sisendid, väljundid, operaator, olek, käitumine). Süsteemide liigitamine. Süsteemide omadused, struktuur, entroopia. Süsteem objekt, mis koosneb osadest ehk elementidest ja kus osade vahel on seosed ning kogu see osade kooslus moodustab terviku / süsteem on omavahel seostatud elementide hulk, mida vaadeldakse kui tervikut. Elemendid asjad või objektid, millest süsteem koosneb (võivad olla materiaalsed nt aatomid, või siis ideaalsed , abstraktsed nt mõisted, mis moodustavad mingi otsuse) Süsteeme kirjeldades vaadeldakse süsteemi elementide vahelisi seoseid kui põhjuslikke. Sellest tulenevalt koosneb süsteem sisendelementidest ehk sisenditest, väljundelementidest ehk väljunditest ja operaatorist ehk funktsioonist, mis määrab väljundite sõltuvuse sisenditest. Olek suletud / ava
TALLINNA TEHNIKAÜLIKOOL INFOTEHNOLOOGIA TEADUSKOND IAX0583 Programmeerimine I Funktsiooni y = f(x) arvutamine Kodutöö I Juhendaja: Tallinn 2018 Autorideklaratsioon Olen koostanud antud töö iseseisvalt. Kõik töö koostamisel kasutatud teiste autorite 1
1. Mis on staat anal, võrdl staat anal, dünaamiline anal, mis on eesmärgiks? *Staatilises e. tasakaaalu analüüsis on valitud muutujate väärtused sellised, et süsteemi seisund säilub (s.t. puudub tendents muutuda). Tasakaal ei ole tingimata ideaalne seis. Osaline turutasakaal (lineaarne & mittelineaarne mudel), üldine turutasakaal. *Võrdlevstaatiline analüüs tegeleb erinevate tasakaalu seisundite võrldemisega (vastab erinevate parameetrite ja välimuutujate komplektidele). Kui mingi parameeter või välimuutuja muutub, läheb süsteem tasakaalust välja, siis võrreldakse uut ja vana. VSA on kvalitatiivne või kvantitatiivne. Peaülesanne leida sisemuutujate muudumäärad sõltuvalt parameetri või välimuutuja muutudst. *Dünaamilises analüüsis jälgitakse muutujate teed ajas ning kas antud aja jooksul muutujad koonduvad kindlateks tasakaaluväärtuseks. Täiendab eelmist kahte, sest uurib kas tasakaal on üldse saavutatav. Oluline on, et muutujad seostatakse ajaga (
Teoreetiline informaatika Kordamisküsimuste vastused Eero Ringmäe 1. Hulkade spetsifitseerimine, tehted hulkadega, hulgateooria paradoksid. Hulk: Korteezh järjestatud lõplik hulk. Hulk mingi arv elemente, mille vahel on leitav seos klassifitseeritud elementide kogum. Hulk samalaadsete objektide järjestamata kogum. Hulga esitamine: elementide loeteluna A = {2;3;4} predikaadi abil A = {x | P(x)} Tühihulk on iga hulga osahulk. Iga hulk on iseenda osahulk. Hulga boleaan kõigi osahulkade hulk. H boleaan on 2H. 2H = {x | x on osahulgaks H-le}. Boleaani võimsus |2H| = 2|H| Tühja hulga boleaani võimsus on 1. Tehted: Hulkade võrdsus = A on B osahulk AND B on A osahulk. Ekvivalentsiseose definitsioon ((A => B) && (B => A)) hulgas sisaldavad samu elemente. Hulga osahulk võib võrduda hulgaga. Hulga pärisosahulk ei või võrduda. Hulkade ühend C = {x | x kuulub A &&
TALLINNA TEHNIKAÜLIKOOL Automaatikainstituut Automaatjuhtimise ja süsteemianalüüsi õppetool TEHISNÄRVIVÕRGUD JA NENDE RAKENDUSED Õppematerjal Koostas: Eduard Petlenkov Tallinn 2004 1 Sisukord Eessõna ......................................................................................
TALLINNA TEHNIKAÜLIKOOL Automaatikainstituut Automaatjuhtimise ja süsteemianalüüsi õppetool TEHISNÄRVIVÕRGUD JA NENDE RAKENDUSED Õppematerjal Koostas: Eduard Petlenkov Tallinn 2004 1 Sisukord Eessõna ......................................................................................
Kinnitan, et kõigi tööde koodid on minu poolt kirjutatud ning on vabalt kasutatavad kõigile. Ei soovita otse maha kopeerida koodi, sest Tartu Ülikoolil on programmid, millega nad saavad võrrelda sinu koodi sarnasust teiste tudengite koodidega. Ei vastuta, kui panete sellega toime akadeemilise petturluse! Edu! :) 1. Nädala kodutöö 1. Maja Kirjuta programm, mis joonistab kilpkonnaga lihtsa otsevaates maja (võib olla ka pseudo- 3D vaatega). from turtle import * from math import * laius = 200 kõrgus = 200 uksePikkus = 100 ukseLaius = 50 aknaKõrgus = 50 aknaLaius = 50 #Maja forward(laius/2) right(90) forward(kõrgus) right(90) forward(laius) right(90) forward(kõrgus) right(90) forward(laius/2) right(180) forward(laius/2) right(90) right(45) forward((laius/2)/cos(pi/4)) #Trigonomeetriaga saadud katuse diagonaali pikkus right(90) forward((laius/2)/cos(pi/4)) #Ukse joonistamine right(45) forward(kõrgus) right(90) forward(20) right(90) forward(uksePikkus) left(90) forward(uk
omistamise operaatoreid, mille eesmärk on ennekõike lühendada koodi kirjutamist. ? 1 //omistamise operaatorid 2 $x = 8; 3 $y = 2; echo $x *= $y; 4 Sama asja saab kasutada ka tekstiosade liitmiseks. ? 1 $nimi = 'Mari'; 2 $pnimi = 'Kisakõri'; 3 $nimi .= $pnimi; echo $nimi; 4 Arvude ja teksti vormindamine Siiani oleme lauseid väljastanud funktsiooni echo abil. Leidub ka teisi võimalusi, millest igaühel on oma ülesanne. Üks nendest on printf, mis lisaks väljastamisele vormindab selle. Selleks tuleb lausesse märkida protsendimärgi (%) abil koht kuhu väärtust soovid ning seejärel väärtus. Järgmises näites on kohahoidjaks %s, mis vormindab väärtuse tekstina. ? 1 //muutuja väärtuste vormindamine 2 $nimi = 'Mari'; 3 printf('Tere %s', $nimi); Soovid lausese teisigi väärtusi? Pole probleem, lisa julgelt kohahoidjaid ning lisa soovitud väärtused. ? 1 //muutuja väärtuste vormindamine 2 $nimi = 'Mari';
Andmed ja valemid Excel'is id Excel'is Andmete tüübid Excelis Valemid ja avaldised Funktsioonid Arvandmed, -avaldised ja -funktsioonid Aadressite ja nimede kasutamine valemites. Harjutus "Kolmnurk" Harjutus "Täisnurkne kolmnurk " Arvavaldised - tehete prioriteedid, funktsioonid Loogikaandmed, -avaldised ja funktsioonid Võrdlused ja loogikatehted Võrdlused ja loogikatehted. Harjutused IF-funktsioon Palk & Kauba hind Funktsioonide tabel Minirakendus "Detail" - ülesande püstitus "Detail" - kasutajaliides "Detail" - materjalid "Detail" - värvid Ajaandmed, -avaldised ja -funktsioonid Tekstandmed, -avaldised ja funktsioonid Lisad Nimede määramine ja kasutamine Valideerimine Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid Otsimine. Funktsioon VLOOKUP Valemiredaktor MS Equation 3.0 s "Kolmnurk"
C# - PROGRAMMERIMISE KEEL Programm on eeskirjade (käskude) kogum, mis määrab, milliseid operatsioone ja tegevusi peab arvuti täitma andmetega antud klassi kuuluvate ülesannete lahendamiseks. Andmed on informatsiooni formaliseeritud esitus kujul, mis võimaldab informatsiooni salvestamist ja töötlemist arvutis. Eristatakse mitut liiki andmeid: arve, tekste, graafikakujundeid, heli jm. Programmide koostamiseks on loodud spetsiaalsed programmeerimiskeeled. Taolisi keeli on palju, kuid enamiku ülesehitus ja käsutamise põhimõtted on analoogilised. Kasutamisvaldkonna järgi jagatakse keeled kahte rühma: universaalsed ehk üldkeeled ja spetsialiseeritud keeled. Üldisi programmeerimiskeeli käsutatakse suvaliste rakendus- ja süsteemi-programmide loomiseks, mis töötavad autonoomselt või koos teiste programmidega. Praegusel ajal on levinud järgmised üldised programmeerimiskeeled C, ++, Visual ++, Visual Basic, Java, Pascal, Fortran, Cobol. C# Spetsialiseeritud k
FileOutputStream out = null; try { in = new FileInputStream("minemine.txt"); out = new FileOutputStream("koopia.txt"); int c; while ((c = in.read()) != -1) { out.write(c); } } finally { if (in != null) { in.close(); } if (out != null) { out.close(); } } } } Märgivoog ridahaaval: Võtame ridahaaval ("rn"; "r"; "n" ) 1. BufferedReader - readline 2. PrintWriter print, println, printf Näide import java.io.*; public class RidadeKopeerimine { public static void main(String[] args) throws IOException { BufferedReader sisendvoog = null; PrintWriter väljundvoog = null; try { sisendvoog = new BufferedReader(new FileReader("minemine.txt")); väljundvoog = new PrintWriter(new FileWriter("koopia3.txt")); String l; while ((l = sisendvoog.readLine()) != null) {
1. Muutuvad suurused.
Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim
muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi
nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT
ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad
suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed
konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71
1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva
alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a
Läks Aitab Protsesside juhtim a b a_1 b_1 15 8 8 10 Igale Jukule personaalne J Igale Krapsule oma esside juhtimine ukule personaalne planeet! J gale Krapsule oma komeet! Protsesside modelleerimisest If-laused Kujud. Iseseisvalt Select Case-lause Lõputu kordus Harjutus "Veski" Lõputu kordus katkestusega Harjutus "Auto_1" ja "Auto_2" Arvu arvamine. Iseseisvalt Funktsiooni nullkohad Järelkontrolliga kordus Eelkontrolliga kordus Harjutused "Auto_3" ja "Autod_4". Iseseisvalt Fuktsioonide nullkohad. Iseseisvalt Do…Loop- kordused. Demod For ... Next-lause Funktsiooni värtuste keskmise ja maksimumi leidmine Lahtrite värvid. Demo For…Each-lause Harjutus "Ufod" Rakendus "Ufod". Iseseisvalt Lahtriploki keskmised Protsesside modelleerimisest algoritmid pr
27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4. Pi
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega
Programmeerimine keeles PHP Andrei Porõvkin Tartu Ülikool (2009) 1 1.1 Üldinfo Alguses oli interneti lehed omavahel seotud staatiliste html dokumentide süsteemina, aga selleks, et mingis dokumendis muutusi teha oli vaja lehti failisüsteemis käsitsi muuta. Kahjuks selline staatiline mudel ei jõua kiirelt muutuva kaasaegse maailma progressile järgi. Seega võeti kasutusele dünaamiline mudel. Dünaamilise mudeli korral ei hoita serveris staatilisi html lehte vaid neid genereeritakse selleks spetsiaalselt välja töötatud programmidega, mis serveril töötavad. Antud kursuse jooksul tutvume klient-server arhitektuuriga, installeerime enda arvutisse veebiserveri ja php interpretaatori ning saame baasteadmisi serveripoolsest keelest PHP. Kursuse teemad on pühendatud ainult PHP keelele (väljarvatud seitsmes teema), aga see ei tähenda, et sellest piisab suure ja eduka veebilehe loomiseks. Mahuka infosüsteemi ei saa ette kujutada ilma andme
Läks Aitab Protsesside juhtim a b a_1 b_1 15 8 8 10 Igale Jukule personaalne J Igale Krapsule oma esside juhtimine ukule personaalne planeet! J gale Krapsule oma komeet! Protsesside modelleerimisest If-laused Kujud. Iseseisvalt Select Case-lause Lõputu kordus Harjutus "Veski" Lõputu kordus katkestusega Harjutus "Auto_1" ja "Auto_2" Arvu arvamine. Iseseisvalt Funktsiooni nullkohad Järelkontrolliga kordus Eelkontrolliga kordus Harjutused "Auto_3" ja "Autod_4". Iseseisvalt Fuktsioonide nullkohad. Iseseisvalt Do...Loop- kordused. Demod For ... Next-lause Funktsiooni värtuste keskmise ja maksimumi leidmine Lahtrite värvid. Demo For...Each-lause Harjutus "Ufod" Rakendus "Ufod". Iseseisvalt Lahtriploki keskmised Protsesside modelleerimisest
1 Lõplikud automaadid ja regulaarsed keeled. DEF: Lõplik automaat on sellise arvuti mudel, millel puudub mälu (või seda on väga vähe). DEF: Automaadi M keeleks nimetatakse sõnede hulka A, mida M aktsepteerib. L(M)=A DEF: Keelt nimetatakse regulaarseks, kui seda aktsepteerib mingi deterministlik lõplik automaat. Reg. keelest saab teha lõpliku arvu sõnesid. Tehted regulaarsete keeltega: A∪B = {x|x ∈ A või x ∈ B} ühend nt good, girl, boy, bad A◦B ={xy|x ∈ A ja y ∈ B} konkatenatsioon nt goodboy, goodgirl, badboy, badgirl A∗ = {x1x2...xk|k>=0 ja iga xi ∈ A} sulund nt ε, good, bad, goodgood, badgood… 2 Regulaarsete keelte omadusi. Regulaarsed avaldised. Teoreem: Regularsete keelte hulk on kinnine ühendi suhtes. T: Aktsepteerigu automaat N1 = (Q1,Σ,δ1,Q10,F1) keelt A1 ja automaat N2 = (Q2,Σ,δ2,Q20,F2) keelt A2. Eeldame, et keeltel pole ühiseid olekuid. Ühendi A1 ∪ A2 aktsepteerib lõplik automaat N=(Q;Σ,δ,Q0,F), kus: • Q = {q0} ∪ Q1 �
MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α alfa Ν ν nüü Β β beeta Ξ ξ ksii Γ γ gamma Ο ο omikron Δ δ delta Π π pii Ε ε epsilon Ρ ρ roo Ζ ζ dzeeta Σ σ sigma Η η eeta Τ τ tau Θ θ teeta Υ υ üpsilon Ι ι ioota Φ φ fii Κ κ kap
Funktsioon. Määramispiirkond, väärtuste hulk. Pöördfunktsioon. Seaduspärasust või teisendust, mis igale X elemendile x seab vastavuse ühe hulga Y elemendi y nim. argumendi x funktsiooniks ja kirjutatakse y=f(x) Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x l
Funktsioon. Määramispiirkond, väärtuste hulk. Pöördfunktsioon. Seaduspärasust või teisendust, mis igale X elemendile x seab vastavuse ühe hulga Y elemendi y nim. argumendi x funktsiooniks ja kirjutatakse y=f(x) Funktsiooni y=f(x) määramispiirkonnaks on kõigi nende argumendi x väärtuste hulk, mille korral funktsioon omab mõtet ja on lõpliku väärtusega. Funktsiooni väärtuste hulgaks nim. nende väärtuste hulka, mida funktsioon omandab, kui läbib kogu määramispiirkonna. Tingimused, mis peavad olema täidetud elementaarfunktsioonide kaudu esitatud reaalmuutuja funktsioonil: B ( x) 1) A( x) 0 A( x) 2) 2 x A( x) A( x) 0 3) logaA(x) A(x) >0 arcsin A( x) 4) -1 A( x) 1 arccos A( x) Funktsiooni y=f(x) pöördfunktsiooniks nim. f-ni y=g(x), mis igale funktsiooni f väärtusele y seab vastavusse need argumendi x väärtused, mille korral y=f(x) Olgu funktsioonid y=f(x) ja y=g(x), siis väärtus y on teisendatud argumendi x l