3. Kui võrrand ei sisalda murde ega sulge, viiakse kõik tundmatuga liikmed võrrandi vasakule ning kõik arvud võrrandi paremale poolele. 4. Kui vastavad liikmed on õigele poole viidud, koondatakse võrrandi vasakul ja paremal poolel olevad liikmed (võrrand saab kuju ax = b). 5. Kui võrrand on kujul ax = b, siis jagatakse võrrandi pooled tundmatu ees oleva arvuga (arvuga a). Võrratuse saame siis, kui kirjutame kahe avaldise vahele võrratusmärgi <, >, ≤ , ≥ . 2a + 4 < 16 + 5a Arvvõrratus on võrratus, mille mõlemal pool on arvavaldised. 45 - 3∙6 > 2 + 8 Arvvõrratus on kas tõene või väär. -4 < 2 (tõene), 9 > 0 (väär) Võrratus võib sisaldada ka tundmatuid. 2x - 3,4 > 6 + 5x Tundmatu seda väärtust, mille korral saame antud võrratusest tõese lause, nimetatakse võrratuse lahendiks. 2x > 9; x > 4,5; x = 5 on võrratuse lahend Võrratuse kõik lahendid moodustavad võrratuse lahendihulga.
Vaheta vrrandi pooled 3 3m-7=5+2m Vaheta vrrandi pooled 3 5x=8x-5 Jaga vrrandi pooled tundmatu kordajaga 0 7x=21 Jaga vrrandi pooled tundmatu kordajaga 0 -0,3y=-1,2 Jaga vrrandi pooled tundmatu kordajaga 0 -5n=25 Vii kik tundmatut sisaldavad liikmed vrrandi vasakule poolele ja arvud vrrandi paremale poolele ning seejrel koonda sarnased liikmed 4 3x-4=7x Vii kik tundmatut sisaldavad liikmed vrrandi vasakule poolele ja arvud vrrandi paremale poolele ning seejrel koonda sarnased liikmed 4 9-2y=5y+3 Vii kik tundmatut sisaldavad liikmed vrrandi vasakule poolele ja arvud vrrandi paremale poolele ning seejrel koonda sarnased liikmed 4 2m-3+5=2-5m+1+3m Lahenda vrrand 0 9x-15=2-8x Lahenda vrrand 0 6-5n=3n+22 Vaheta vrratuse pooled 3 8>4 Vaheta vrratuse pooled 3 -12<=8 Vaheta vrratuse pooled 3 -4x>=16 Vaheta vrratuse pooled 0 3 -8<20y Liida vrratuse mlema poolega arv 3 0 8>4 Liida vrratuse mlema poolega arv 3 0 -12<=8 Liida vrratuse mlema poolega arv 3 0 -4x>=16 Liida vrratuse m
Võrrandid x - 3 1) 2 x (3 x - 2) - 31 - ( 2 - x )(2 x + 3) - = 13( 5) 2 2 x - 7 3x + 1 x +6 2) x + - =5- ( 3) 2 5 2 3x - 4 x + 1 x +2 3) 2 x - 1 - = - 1 - ( 2 ) 2 3 2 2x -1 2x +1 8 4) = + (1) 2 x +1 2 x -1 1 - 4x 2 96 2 x - 1 3x - 1 5)5 + 2 = - ( 8) x - 16 x+4 4-x 10 x - 23 5 3 2 6) 3 - + = 0 3 2 x - 5 x - 5 x + 2 2( x + 1) - 7 x x + 1 2 2 3 7) 1
nimetatakse võrrandi lahendiks. Võrrandil võib olla üks või mitu lahendit, kuid neid võib olla ka lõpmata palju või mitte ühtegi. Lahendada võrrand tähendab leida tundmatu kõik need väärtused, mis rahuldavad võrrandit (st tundmatu asendamisel lahendiga muutub võrrand samasuseks). Võrrandi lahendamisel püütakse võrrandit teisendada nii, et iga uus võrrand oleks eelmisega samaväärne. Lubatud teisendused (võrrandi põhiomadused) on järgmised: 1) võrrandi pooli võib vahetada; 2) võrrandi mõlemale poolele võib liita või mõlemast poolest lahutada ühe ja sama arvu või muutujat sisaldava avaldise (mis omab mõtet võrrandi kogu määramis- piirkonnas), see annab sisuliselt teisenduse, mida tuntakse kui võrrandi liikmete teisele poole võrdusmärki viimist muutes samal ajal liikmete märgid vastupidisteks; 3) võrrandi mõlemat poolt võib korrutada või jagada ühe ja sama nullist erineva
Tartu Ülikool Teaduskool VÕRRATUSED Metoodiline juhend TÜ Teaduskooli õpilastele Koostanud Hilja Afanasjeva Jüri Afanasjev Tartu 2003 Juhendmaterjal on jätkuks TÜ Teaduskooli I kursusel läbitöötatud brosüürile E. Tamme "Algebraliste võrrandite lahendamisest". Vaadeldakse kõrgema astme võrratuste lahendamist intervallmeetodiga, absoluutväärtusi sisaldavaid võrratusi ja juurvõrratusi. Õppematerjali koostamisel kasutatud kirjandus: Abel, E. jt Aritmeetika ja algebra. Tartu, 1984 Gabovits, J. Võrratused. Tartu, 1970 Jürimäe, E., Velsker, K
KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ...........................................................................................5 Täisarvude hulk Z....................................................................
Matemaatika 11. klassi praktikumi töö 1. Kirjalik arvutamine m Tehted astmetega (a:b)n = an : bn Tehted juurtega a n n am (ab)n = an * bn a b a b an am = an+m n m a n m a a a an : am = an-m b b n m n*m
Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad
Kõik kommentaarid