2.4 RUUTVÕRRATUS Ühe muutujaga ruutvõrratuse üldkuju on ax2 + bx + c > 0, kus a 0. Märgi > asemel võib võrratuses olla ka üks märkidest <, , . Ruutvõrratuse lahendamiseks 1) lahendame ruutvõrrandi ax2 + bx + c = 0; 2) skitseerime parabooli y = ax2 + bx + c; 3) leiame jooniselt, kus funktsiooni väärtused positiivsed, kus negatiivsed. Ruutfunktsiooni y = ax2 + bx + c graafik on parabool. Kui a > 0, siis avaneb parabool ülespoole. Kui a < 0, siis avaneb parabool allapoole. Kui lahendame ruutvõrrandi ax2 + bx + c = 0, siis on kolm erinevat võimalust: A) Diskriminant D = b2 4ac > 0. Parabool lõikab sel juhul x telge kahes erinevas punktis. ax2 + bx + c > 0 L = ( ;x1) (x2; ) ax2 + bx + c >0 L = (x1; x2) 1 B) Kui diskriminant D = 0, siis on ruutvõrrandil kaks võrdset reaalarvulist lahendid ning parabool puudutab x
1 n a1 = a a0 = 1 a n a n am an © Allar Veelmaa 2014 5 10. klass Viljandi Täiskasvanute Gümnaasium LINEAAR- JA RUUTVÕRRANDI LAHENDAMINE 1) Lineaarvõrrandi ax + b = 0 lahendamine b Kui a ≠ 0, siis lahend on x a Kui a = 0, siis on kaks võimalust: a) kui b = 0, siis võrrandi 0 · x = 0 lahendiks sobib iga arv. b) kui b ≠ 0, siis võrrandil 0 · x = b lahendeid ei ole. 2) Ruutvõrrandi ax2 + bx + c = 0 lahendamine: Kui a = 1, siis sellist võrrandit nimetatakse taandatud ruutvõrrandiks ja esitatakse kujul x2 + px + q = 0 ning see lahendatakse valemiga
Ruutvõrrandid. Ruutvõrrandid esituvad kujul ax2 + bx + c = 0. Ruutvõrrandid jagunevad taandamata ja taandatud ruutvõrranditeks: Taandamata ruutvõrrand Taandatud ruutvõrrand ax2 + bx + c = 0 x2 + px + q = 0 - b ± b 2 - 4ac 2 x1;2 = p p 2a x1;2 = - ± - - q 2 2 Kui ruutvõrrandis ax2 + bx + c = 0 kas b = 0 või c = 0, siis on tegemist mittetäieliku ruutvõrrandiga. Selliseid võrrandeid viisakas inimene ei lahenda eespool toodud lahendivalemiga, sest neid saab lihtsamalt lahendada. Näide 1. Lahendame võrrandid 1) 3x2 + 6x = 0, 2) 0,5x2 23 = 0, 3) 3x2 = 0. 1) Võrrandi 3x2 + 6x = 0 lahendamisel toome x sulgude ette, siis saame x(3x + 6) = 0. Kahe arvu korrutis on
Lineaarvõrratused, ruutvõrratused ja murdvõrratused Lineaarvõrratus Ühe tundmatuga esimese astme ehk lineaarvõrratuseks nimetatakse võrratust kujul ax + b > 0 või ax + b < 0 või ax + b 0 või ax + b 0, kus a 0 ja b on antud arvud ja tähega x on tähistatud tundmatut. Lineaarvõrratuste lahendamine Lineaarvõrratuste lahendihulgad saame järgmiste teisendustega: 1. viime liikme b võrratuse paremale poolele; 2. jagame saadud võrratuse mõlemaid pooli arvuga a (kui a < 0, muutub seejuures võrratuse märk vastupidiseks). Näide 1 2 x 6 0 2 x 6 x 3 Näide 2 x 9 4 x 3x 9 0 3x 9 x 3 Ruutvõrratus Ühe tundmatuga ruutvõrratuseks nimetatakse teise astme võrratust kujul ax2 + bx + c > 0 või
3 Niisiis: lahendada võrratus (võrratuste süsteem) tähendab leida arvpiirkonnad milles võrratus (süsteem) on rahuldatud. Märgime, et võrratusel võivad lahendid üldse puududa, seda võivad rahuldada kõik reaalarvud või ainult üksikud arvud. Et arvpiirkond ise on määratud võrratustega, mida nende lihtsuse tõttu nimetame elementaarvõrratusteks, siis tähendab võrratuse (süsteemi) lahendamine sellele vastavate elementaarvõrratuste väljaselgitamist. Võrratuse (süsteemi) lahendamisel asendatakse see järkjärgult lihtsamate võrratustega (süsteemidega), kuni jõutakse elementaarvõrratusteni. Sellises asendamisprotsessis võib kasutada vaid esialgse võrratusega (süsteemiga) samaväärseid võrratusi (süsteeme). Kaht võrratust nimetatakse samaväärseiks , kui neil on kõik lahendid ühised,
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD 1. ARVUHULGAD …………………………………………………… 2 2. ARITMEETIKA ……………………………………………….…… 3 2.1 Mõningate arvude kõrgemad astmed ………………………….……. 3 2.2 Hariliku murru põhiomadus ………………………………….…….. 3 2.3 Tehetevahelised seosed ……………………………………….…….. 3 2.4 Tehted harilike murdudega ………………………………….……… 4 2.5 Tehete põhiomadused ……………………………………….……… 5 2.6 Näited tehete kohta positiivsete ja negatiivsete arvudega …….…….. 5 2.7 Näited tehete kohta ratsionaalarvudega ……………………….……. 6 2.8 Protsent ja promill ……………?
1.5 RUUTVÕRRAND Ruutvõrrandiks nimetatakse võrrandit kujul ax2 + bx + c = 0, kus a 0. Kordajad a, b ja c on reaalarvud ning x tundmatu (otsitav). Ruutvõrrand on teise astme algebraline võrrand. Ruutvõrrandi liikmeid nimetatakse järgmiselt: ax2 ruutliige, kus a on ruutliikme kordaja; bx lineaarliige, kus b on lineaarliikme kordaja; c vabaliige. Ruutvõrrandi lahendivalem on - b ± b 2 - 4ac x= () 2a Avaldist D = b2 4ac nimetatakse ruutvõrrandi diskriminandiks. · Kui D > 0, siis ruutvõrrandil on 2 erinevat lahendit. · Kui D = 0, siis on ruutvõrrandil 2 võrdset lahendit. · Kui D < 0, siis ruutvõrrandil reaalarvulised lahendid puuduvad. Kui ruutliikme kordaja on negatiivne arv, siis enne võrrandi lahendamist korrutame mõlemaid pooli arvuga (1) ja saame ruutliikme kordajaks positiivse arvu. Ruutvõrrandi lahendite õigsust tuleb kontrollida, asendades lahendid algvõrrandis. Tekstülesande korral peab lahend sobima ka üles
Ruutvõrrandi lahendamine - b ± b 2 - 4ac Ruutvõrrandi ax2 + bx + c = 0 lahendivalem on x = . 2a Võrrandi lahendamiseks asendame lahendivalemisse a, b ja c väärtused. Näide 1. Lahendame ruutvõrrandi 5x2 + 6x + 1 = 0. Selles võrrandis a = 5, b = 6 ja c = 1. Asendame need arvud lahendivalemisse, saame - 6 ± 6 2 - 4 5 1 - 6 ± 36 - 20 - 6 ± 16 - 6 ± 4 x= = = = . 2 5 10 10 10 -6+4 -2 - 6 - 4 - 10 Siit x1 = = = -0,2 ja x2 = = = -1. 10 10 10 10 Näide 2. Lahendame ruutvõrrandi 2x2 + x - 15 = 0.
Kõik kommentaarid