REFERAAT Dioodid Tallinn 2009 SISUKORD 1) Ajalugu 2) Diood 3) Dioodi skeemitähis 4) Olulised parameetrid 5) Dioodi sugulased 6) Jaotus AJALUGU Elektronlamp ja pooljuhtdioodid arenesid paraleelselt. Elektronlamp dioodi põhimõtte avastas Frederick Guthrie 1873 aastal ning juba aasta hiljem avastas Saksa teadlane Karl Ferdinand Braun pooljuhtdioodide tööpõhimõtte. Thomas Edison taasavastas 1880 aasta 13. veebruaril elektronlamp dioodi tööpõhimõtte ning patenteeris selle 1883 aastal (U.S. Patent 307,031), kuid ei
Teema 3. Pooljuhtseadised M.Pikkovi ainekava ja konspekti järgsed allteemad (http://www.ttykk.edu.ee/aprogrammid/elektroonika_alused_MP.pdf, lk. 23...41): - Pooljuhtdiood, tema ehitus. Alaldava siirde tekkimise tingimus. Protsessid pooljuhtdioodis. Pooljuhtdioodi kasutamisala, põhiparameetrid (lk 23...26). - Bipolaartransistor, tema ehitus, pingestamine, protsessid transistorstruktuuris (27...30). - Ühise baasiga ja ühise emitteriga lülituse karakteristikud (30...32). - Bipolaarne liittransistor (33). - Väljatransistorid (p-n siirdega, isoleeritud paisuga), nende ehitus, tööpõhimõte, tunnussuurused (34...37).
sagedus võib olla 20 KHz kuni 100 KHz. Alaldusdioodid on suure võimsuselised dioodid. Nende lubatavad pärivoolud on poolest amprist kuni tuhande amprini, lubatavad vastupinged kuni 3 KV. Dioode valmistatakse nii üksikelementidena kui ka komplektidena, mingiks kindlaks kasutuseks. Nii näiteks on levinud: a. Dioodsillad, kus ühises korpuses paikneb neli dioodi (joonis 1) b. Diood sambad, kus suurema vastupinge saamiseks on järjestikku ühte kesta ühendatud terve rida dioode (joonis 2) Alaldusdioodide omadusi iseloomustatakse järgmiste parameetritega (joonis 3): 1.) Suurim lubatav pärivool, see on pärivool kesk väärtus, mis võib dioodi läbida, ilma tema riknemiseta 2.) Suurim lubatav vastupinge, see on lubatava vastupinge hetk väärtus. Selle ületamisel võib tekkida dioodis läbilöök. 3
Tööpunkt valitakse siis pärisuuna tunnusjoone järsult tõusval osal.. Kõrgema stabiliseerimispinge saamiseks ühendatakse neid kaks või kolm ühte korpusesse järjestikku. Selliseid seadiseid nimetatakse stabistorideks. Nende stabiliseerimispinge on väiksem kui stabilitronidel ja ka stabiliseeriv toime on väiksem. 2.5. Mahtuvusdioodid (Capacitance Diode) Mahtuvusdiood ehk varikap on ränidiood, mille puhul kasutatakse P-N-siirde mahtuvuse sõltuvust vastupingest. Diood toimib sel juhul elektriliselt tüüritava muutkondensaatorina, mille elektroodidevahelise dielektriku - siirde tõkkekihi paksus suureneb vastupinge suurenemisel. Põhiliselt kasutatakse mahtuvusdioodi raadiotehnikas võnkeringide häälestamiseks soovitud sagedusele, kus nad on välja tõrjunud varem laialdaselt kasutatud pöördkondensaatorid. Mahtuvusdioodi tüüpiline mahtuvuse sõltuvus pingest on toodud joonisel 2.3. 15 JOONIS 2.3.
korpusesse järjestikku. Selliseid seadiseid nimetatakse stabistorideks. Nende stabiliseerimispinge on väiksem kui stabilitronidel ja ka stabiliseeriv toime on väiksem. 12 2.5. Mahtuvusdioodid (Capacitance Diode) Mahtuvusdiood ehk varikap on ränidiood, mille puhul kasutatakse P-N-siirde mahtuvuse sõltuvust vastupingest. Diood toimib sel juhul elektriliselt tüüritava muutkondensaatorina, mille elektroodidevahelise dielektriku - siirde tõkkekihi paksus suureneb vastupinge suurenemisel. Põhiliselt kasutatakse mahtuvusdioodi raadiotehnikas võnkeringide häälestamiseks soovitud sagedusele, kus nad on välja tõrjunud varem laialdaselt kasutatud pöördkondensaatorid. Mahtuvusdioodi tüüpiline mahtuvuse sõltuvus pingest on toodud joonisel 2.3. JOONIS 2.3. 2.6
Uudo Usai ELEKTROONIKA KOMPONENDID Elektroonika alused TPT 1998 ELEKTROONIKAKOMPONEND1D lk.1 SISSEJUHATUS Kaasaegsed elektroonikaseadmed koosnevad väga suurest hulgast elementidest, millest on koostatud vajaliku toimega lülitused. Otstarbe tähtsuselt jagatakse neid elemente põhi-ja abielementideks. Põhielementideks on need, milleta pole lülituste töö võimalik. Abielementideta on lülituste töö küll võimalik, kuid nendest sõltuvad suuresti seadme tarbimisomadused. Põhielemendid jagunevad omakorda passiiv- ja aktiivelementideks. Passiv- elementideks on takistid, kondensaatorid ja induktiivpoolid, aktiivelementideks dioodid, transistorid ja integraallülitused. Abielementideks on pistikud, ümberlülitid, klemmliistud, mitmesugused konstruktsioonelemendid jne. Käesolevas õppematerjalis
................................................................................... 195 2 1.Elektroonika ajaloost Elektroonika osad 3 4 Elektroonika ajaloost XIX sajandi lõpp XX sajandi algus Alaldid, Cu O, Se, ... Raadio leiutamine. Säde, koherer, Morse A.Popov - 1889.a; vastuvõtja - 1895.a G.Markoni - 1897.a - patent. 1904.a. - elektronlamp, - diood - J.Fleming - alaldi, - detektor. Voolu juhib ühes suunas. Dioodi ehitus: Kui anoodil on + potentsiaal, siis tekib elektronide liikumine katoodist - anoodile. 1907.a. - Li de Forest - elektronvaakumtriood. 5 6 Elektroonikas: potentsiaal on pinge mingi väljavalitud ühise elektroodi (juhtme) suhtes. Võre potentsiaal on negatiivne - selleks, et ei tekiks võrevoolu.
4. AJAMITE JÕUAHELATE LÜLITUSED Kuidas ühendatakse elektrimootori mähised toiteallikaga? Lülitid, releed ja kontaktorid, programmeeritavad kontrollerid Kuidas toimub mootorite kiiruse reguleerimine? Impulss- või takistusreguleerimine? Pooljuhtmuundurite skeemid 4.1. Mootorite lihtsad käivitus- ja kaitseahelad Asünkroonmootori otselülitus toitevõrku. Suurt osa asünkroonmootoritest lülitatakse otse toitevõrku. Lülitusseadmeks võivad olla kas koormus või kaitselülitid. Sagedaste lülituste korral on lülitusseadmeks tavaliselt surunupplülititega juhitav kontaktor. Sõltuvalt vajadusest võib mootor pöörelda kas ühes suunas, või tuleb selle pöörlemissuunda muuta. Ühesuunalise pöörlemisega mootori otselülitus toitevõrku on näidatud joonisel 4.1. Mootori ja juhtnuppude toiteahelad pingestatakse lülitiga Q, milleks tavaliselt on kaitselüliti. Mootori käivitamine toimub vajutamisega surunupplülitile SK, mis sulgeb kontaktori lülitusmagneti mähise K voolua
Kõik kommentaarid