Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Keemia: leelismetallid, leelismuldmetallid,Alumiinium(Al), Raud(Fe), Vask (Cu), oküdeerija, redutseerija - sarnased materjalid

metall, alumiinium, oksiid, naatrium, leelismetallid, sulamistemperatuur, kaalium, soolad, isotoop, peroksiid, eraldavad, leelise, oksiidid, tahked, aluselised, hüdroksiidi, kristalsed, leelismuldmetallid, kaltsium, kattub, perioodis, oksüdeerija, redutseerija, mõõtmete, ainsa, muutudes, leegil, pehmed, hüperoksiid, oksüdeerijad, anumas, leelised
thumbnail
3
docx

Leelismetallid

Leelismetallid, naatrium Leelismetallid asuvad IA rühmas. Leelismetallid kui aktiivseimad metallid loovutavad kergesti aatomi väliselt kihilt ainsa elektroni. Kõige tuntumad leelismetallid on kaalium ja naatrium. Veel kuuluvad sinna ka liitium, rubiidium, tseesium, frantsium. Keemiliste omaduste poolest kuuluvad leelismetallid kõige aktiivsemate elementide hulka - nad on väga tugevad redutseerijad. Naatriumi omadused Välimuselt on naatrium hõbevalge metall. Naatrium on pehme, teda saab noaga lõigata. Naatriumi tihedus on 0,97 g/cm3 ja sulamistemperatuur on 98 Celsiust. Ta on keemiliselt väga aktiivne, mistõttu hoitakse teda hapnikukindla kihi all, eemal veest. Naatrium reageerib paljude lihtainete, vee ja hapetega. Hapetest ja veest tõrjub ta välja vesinikku ning tekib vastavalt sool ja hüdroksiid. Suurem osa naatriumi sooli lahustub vees hästi. Omadustelt on naatrium leelismetall. Sellisena on ta oksüdatsiooniaste ühendites 1. Naatriumi

Keemia
108 allalaadimist
thumbnail
1
doc

Leelis- ja leelismuldmetallid

väga püsivateks leelismetallide katioonideks laenguga 1+. Väikese elektronegatiivsusega, ühendites on valdavalt iooniline side. Looduses vabalt ei leidu, eelkõige kloriididena. Kõige parem on kindlaks teha kuumutamisel, leegil on iseloomulik värvus. Kerged, pehmed, suhteliselt madala sulamistemperatuuriga. Keemiliselt väga aktiivsed, oksüdeeruvad kiiresti kokkupuutel hapniku (tekib peroksiid, hüperoksiid; need on tugevad oksüdeerijad, süsinikdioksiidiga reageerides eraldavad hapnikku) või veega (moodustavad leelise, tõrjuvad välja vesiniku). Seetõttu hoitakse suletud anumas petrooleumi- või õlikihi all. Nahale tekitavad sügavaid põletushaavu. Naatriumit kasutatakse redutseerijana ning välisvalgustites, liitiumit sulamite koostises ning keemilistes vooluallikates. Leelismetallide oksiidid on valged tahked ained, millel on väga tugevad aluselised omadused

Keemia
93 allalaadimist
thumbnail
4
rtf

Oksiidide leidumine looduses ja nende kasutamine

oksüdeerijana. Oksiide on mõningatel juhtudel võimalik saada ka metalli reageerimisel veega, nad tekivad ka paljude ebapüsivate ainete lagunemisel. Metallioksiidid on erineva värvusega tahked kristalsed ained. Üks tähtsamaid metallioksiide argielus on kaltsiumoksiid CaO ehk kustutamata lubi. Seda saadakse tööstuses lubjakivi lagundamisel kõrgel temperatuuril. Argielus puutume kokku veel mitmete teiste metallioksiididega. Laialt kasutatav metall alumiinium kattub õhuhapnikuga reageerimisel õhukese oksiidikihiga. See kiht on nii tihe, et kaitseb , metalli edasise oksüdeerumise eest. Seepärast on alumiinium tavatingimustes õhu ja vee suhtes hea vastupidavusega.Ka raua pinnal tekkiv rooste koosneb põhiliselt oksiidist. Raud : Lihtainena esineb rauda maailmaruumist Maale langenud meteoriitides, kuid ka mõningates magmakivimeis on hõbevalge keskmise kõvadusega metall. Lisandid muudavad raua kõvemaks. Raua tihedus on

Keemia
4 allalaadimist
thumbnail
5
doc

Ehitusmaterjalid ja konstruktsioonid, Metallmaterjalid

teras on rauast rabedam. Legeerterased Legeerterased sisaldavad peale raua ja süsiniku veel legeerivaid lisaaineid, mis parandavad mitmeid terase omadusi. Enamkasutatavad legeerivad terased on : nikkel, kroom, mangaan, räni, vask ja volfram. Vask Keemiline element vask (Cuprum, Cu), kristallstruktuur ­ tahkkeskendatud kuubiline võre. Punakas-kollaka värvusega metall, tihedus 8920 kg/m3 , hea elektri- ja soojusjuht (eritakistus 1.7·10-8 Wm). Sulamistemperatuur 1084.62 °C. Välistingimustes tekib vase pinnale aja jooksul rohekas kattekiht (paatina) [15.08.04], mis kujutab endast erinevate vase hüdraatsoolade segu (sulfaat, karbonaadid). Vase sulamitest on peamised messing ja pronks. Messing on vase ja tsingi sylam. Pronks on vase ja inglistina sulam, harvem on ta vase ja alumiiniumi sulam. Vase sulamid on puhtast vasest tunduvalt tugevamad.

Üldehitus
75 allalaadimist
thumbnail
6
doc

Alumiinium

kool Alumiinium Referaat nimi 2011 Alumiiniumist Alumiinium on keemiline element. Alumiinium on hõbevalge metall tihedusega 2,7 g/cm³ ja sulamistemperatuuriga 660 °C. Alumiiniumi keemilise aktiivsuse tõttu teda looduses lihtainena ei esine. Alumiinium reageerib paljude lihtainete ja hapetega. Hapetest tõrjub ta välja vesinikku ning tekib sool. Amfoteersuse tõttu reageerib alumiinium ka leelistega, tõrjudes nende lahustest vesinikku välja ja moodustades aluminaate. Kõigis püsivamates ühendites on alumiiniumi oksüdatsiooniaste +3. Alumiiniumoksiid on amfoteerne oksiid. Alumiiniumi saadakse boksiidist. Alumiiniumi sulatus on üks kõige energiamahukamaid tootmisi. Sellepärast rajati alumiiniumi tootmist tehaseid hüdroenergiajaamade lähedusse. Tänapäeval rajatakse tehaseid rohkem sadamate lähedale. Alumiinium perioodilisus tabelis

Keemia
37 allalaadimist
thumbnail
12
doc

Lühikokkuvõte

Küllastumatus tähendab, et süsiniku valentsid ei ole kaetud täielikult vesinikega. Nimetuse koostamiseks lisatakse nimetusele ­een. Nummerdama hakatakse sealt, kus kaksikside on lähemal. Meteenid puuduvad. Füüsikalised omadused on sarnased alkaanidega. Alkeenide homogeenilises reas on esimesed 4 alkeeni gaasid, järgmised 5-17 on vedelikud ja alates 18-ndast on tahked ained. Süsiniku arvu kasvu ja vesinike arvu vähenemisega suureneb tihedus ja keemistemperatuur, sulamistemperatuur väheneb. Alkeenid on vees vähelahustuvad ja väga iseloomuliku lõhnaga. Keemilistest omadustest on iseloomulikud põlemine (leek on nähtav, kuna süsinik ei põle täielikult ära) ning liitumisreaktsioonid. Hüdrogeenimine on liitumisreaktsioon vesinikuga (H2), hüdraatimine on liitumisreaktsioon veega (H2O). Dehüdrogeenimine on vesiniku, dehüdrautimine on vee eraldumine. Alkadieenides on süsinike vahel kaks kaksiksidet. Täielik põlemine: C2H4 + 3O2 2CO2 + 2H2O

Keemia
349 allalaadimist
thumbnail
5
doc

Vask

Tartu Kutsehariduskeskus Majutus-ja toitlustusosakond VASK Referaat Tartu 2009 VASK Üldiselt Vask ( ladina keeles cuprum; tähis Cu) on keemiline element järjenumbriga 29. Tal on kaks stabiilset isotoopi massiarvudega 63 ja 65. Aatommass on 63,54. Omadustelt on vask metall. Normaaltingimustes on vase tihedus 8,9 g/cm3. Vask asub IB rühmas ning 4. perioodis. Vase elektronskeem näeb välja: 2) 8) 18) 1). Tema sulamistemperatuur on 1083 Celsiuse kraadi. Vase eritakistus 20 °C juures on 16,78 n·m. Vase värvus varieerub punasest kuldkollaseni. Plastiline metall, mida hakati kasutama umbes 10 000 aastat tagasi. Vask on väheaktiivne metall ning ta ei reageeri hapetega ega veega. Leidumine Vaske leidub looduses peamiselt ühenditena , näiteks sulfiidina (Cu 2S) või rohelise malahhiidina, mis keemiliselt kujutab endast vaskhüdroksiidkarbonaati Cu2(OH)2CO3 ehk CuCO3 x Cu(OH)2

Keemia
78 allalaadimist
thumbnail
14
doc

Raud, nikkel, koobalt

Raud. Fe. Ferrum Raud (Ferrum) on keemiline element järjenumbriga 26. Raud asub Perioodilisussüsteemi VIII B rühmas ja 4. perioodis. Tal on neli stabiilset isotoopi massiarvudega 54, 56, 57 ja 58. Omadustelt on raud metall. Normaaltingimustel on raud tahke aine tihedusega 7,87 g/cm 3. Raua sulamistemperatuur on 1535 Celsiuse kraadi. Raud esineb madalal rõhul nelja kristallmodifikatsioonina olenevalt temperatuurist. Raud on inimesele tuntud väga ammu. Oli ju pärast pronksiaega rauaaeg, mis Eestiski algas juba e. m. a. Metallidest on levikult raud teisel kohal pärast alumiiniumi, kuid toodangult esikohal, sest on kõige kättesaadavam metall.

Keemia
51 allalaadimist
thumbnail
12
doc

Referaat metallid

Suurim leiukoht maailmas on Kurski oblast. Püriiti (FeS2) tavaliselt rauamaagina ei kasutata , sest väävel halvendab püriidist saadud rauasulamite kvaliteeti. Püriiti kasutatakse väävelhappe tootmisel. Sideriit kujutab endast raudkarbonaati (Fe CO3). Raudkarbonaat reageerib süsinikdioksiidi sisalava veega, muutudes lahustuvaks raudvesinikkarbonaadiks : FeCO3+H2O+CO2=Fe(HCO3)2 Raua füüsikalised ja keemilised omadused Raud on hõbevalge keskmise kõvadusega metall. Lisandid muudavad raua kõvemaks. Raua tihedus on 7874 kg/m3 ja sulamistemperatuur 1539 kraadi. Raud on plastiline , mistõttu teda on võimalik valtsida ning sepistada. Ta on hea soojus- ja elektrijuht. Raud on magnetiseeritav. Raua kristallvõre muutub erinevatel temperatuuridel. Raud on keskmise aktiivsusega metall(asub metallide pingerea keskel). Kuivas õhus ta hapnikuga ei reageeri, kuid niiskuses kattub kergesti roostekihiga. Mida lisanditevabam on metall, seda püsivam on

Keemia
101 allalaadimist
thumbnail
29
doc

Keemia aluste KT3

vastupidi. Aktiivsete metalliliste elementide oksiidid on tugevalt aluseliste omadustega, vähemaktiivsete metalliliste elementide oksiidid on enamasti nõrgalt aluseliste omadustega. Mittemetalliliste elementide oksiidid on enamasti happeliste omadustega (v.a üksikud erandid). Elementide metalliliste omaduste nõrgenedes ja mittemetalliliste omaduste tugevnedes oksiidide aluselised omadused nõrgenevad ja happelised omadused tugevnevad. Mida enam vasakul metall pingereas asub, seda: suurem on ta keemiline aktiivsus, seda kergemini ta oksüdeerub, loovutab elektrone. suurem on ta redutseerimisvõime; raskemini redutseeruvad metallioonid. Pingerea iga metall tõrjub kõik temast paremal asuvad metallid nende soolade lahustest välja. Näide: Zn + HCl ZnCl2+ H2 lahja H2SO4 ja sulfaadid väga nõrgad oksüdeerijad, oksüdeerimisvõime kasvab happesuse suurenemisega Metallid (aatomi väliskihil elektrone suht. vähe) käituvad keemilistes reaktsioonides

Keemia alused
41 allalaadimist
thumbnail
7
doc

Metallilised elemendid lihtainetena

Igas perioodis on kõige suurema aatomraadiusega leelismetalli aatom ja kõige väiksemaga väärisgaasi aatom. Suure raadiuse tõttu, seovad nad elektrone nõrgalt ja metallid loovutavad elektrone ( on redutseerijad). Kõige väiksema aatomiga väärisgaasid peaks nagu elektrone liitma, kuid neil on väliskihid juba täidetud - praktiliselt on kõige aktiivsemad mittemetallid on halogeenid. Järgneval diagrammil on kujutatud aatomraadiuste muutumist, selgelt on näha leelismetallid Rühmas, ülevalt-alla aatomraadiused kasvavad ja seega on K aktiivsem metall, kui Na või Li Samuti on KOH tugevam alus, kui LiOH. B rühmades selline seaduspära paraku ei kehti, ei saa ju väita, et kuld on aktiivsem metall, kui hõbe või vask. B rühmade elementide tuumalaengud on väga erinevad, aatom- raadiused, aga suhteliselt lähedased. Füüsikast on teada, et laetud osakeste vahel mõjuv jõud on võrdeline laengute korrutisega ja pöördvõrdeline nendevahelise kauguse ruuduga.

Keemia
49 allalaadimist
thumbnail
12
doc

10 keemilist elementi

Alumiinium Alumiinium on keemiliste elementide perioodilisus tabelis IIIA rühmas 3. perioodis aatomnumbriga 13. Alumiiniumi sümbol on Al. See on hõbedase värvusega, massiarv on 26,98154. Alumiiniumi sulamistemperatuur on 660 kraadi ning keemistemperatuur 2060 kraadi. See on hea elektri ja soojusjuht ning kerge, pehme metall (tihedusega 2700kg/m3 ). Alumiinium reageerib paljude lihtainete ja hapetega. Alumiinium on metallilistest elementidest looduses kõige enam levinud (massisisaldus maakoores 8,2%). Suure aktiivsuse tõttu ei leidu teda vabalt, vaid ainult ühenditena savide ja mineraalide koostises. Alumiiniumi tootmise lähteaineks on boksiid. Alumiiniumi kasutatakse masina, mootori, tanki, ja suurtükitööstustes; sidevahendites, lõhkainete, valgustus ning süütemürskude ja kaablijuhtmestiku tootmiseks ja tööstus ning

Keemia
27 allalaadimist
thumbnail
8
docx

Kordamisküsimused aines Rakenduskeemia

·Mikroskoopiline tase: aatomite vaheliste sidemete muutumine jms. 6. Selgitage millest koosneb teaduslik meetod. ·Andmete kogumine. ·Seoste otsimine andmekogumites. ·Hüpoteesi(de) formuleerimine ja eksperimentaalne kontrollimine. ·Teooria formuleerimine: ­ kvalitatiivsed ja kvantitatiivsed teooriad; ­ ennustused teooria põhjal; ­ mudelid. 7. Materjalide füüsikalised omadused: nimetage ja iseloomustage neid. Tihedus, Sulamistemperatuur, Korrosioonikindlus Erinevaid materjaide grupid (metallid, plastid, keraamika) erinevad üksteisest eelkõige tiheduse (roo) poolest, mille ühik on mahuühikumass, kg/m3. Plastide tihedus on vahemikus 1000-2000kg/m3, keraamikal 1500-2500, metallidel 1700-22000kg/m3 piires. Temperatuuri, mil materjal läheb üle tardolekust vedelasse, nimetatakse sulamistemperatuuriks (Ts). Korrosiooniks nimetatakse materjali ja keskkonna (õhk, gaasid, vesi, kemikaalid) vahelist reaktsiooni, milles

Rakenduskeemia
40 allalaadimist
thumbnail
5
doc

Raud

Raud Raud (Ferrum) on keemiline element järjenumbriga 26. Raud asub Perioodilisussüsteemi VIII B rühmas ja 4. perioodis. Tal on neli stabiilset isotoopi massiarvudega 54, 56, 57 ja 58. Omadustelt on raud metall. Normaaltingimustel on raud tahke aine tihedusega 7,87 g/cm3. Raua sulamistemperatuur on 1535 Celsiuse kraadi. Raud esineb madalal rõhul neljakristallmodifikatsioonina olenevalt temperatuurist. Raud on kõige levinum element Maa koostises ning levimuselt maakoores metallidest alumiiniumi järel teisel kohal. Raua asetus perioodilisussüsteemis ja aatomi ehitus Raud asub perioodilisusüteemis VIII rühma kõrvalalarühmas. Raua aatomi järjenumbrist (26) ja täisarvuni ümardatud aatomimassist (56) järeldub, et

Keemia
77 allalaadimist
thumbnail
12
docx

Anorgaanilised ained

Esimese vooluallika leiutaja oli Alessandro Volta 1800. aastal. See toimis H2SO4, Zn ja Fe pulga toimel. 2. Leelis- ja muldmetallid on IA ja IIA rühma elemendid. Need on kõige metallilisemad elemendid. Suure aktiivsuse tõttu ei esine need elemendid looduses kunagi lihtainena, vaid ühendite koostises, seega võib neid ehedalt kohata ainult keemialaboris. Leelis- ja muldmetallid kuuluvad s-elementide hulka, ehk nende väliskihil elektronvalem on vastavalt ns1 või ns2. Leelismetallid on IA rühma elemendid ning nende oksüdatsiooniaste ühendites on I. Leelismuldmetallid on IIA rühma aktiivsemad elemendid (Ca ja järgnevad elemendid), nende oksüdatsiooniaste ühendites on II. Keemilised ja füüsikalised omadused  värvivad leeki (erinevate metallide ühendid muudavad leegi värvust)  pehmed, suhteliselt kergesti lõigatavad  suhteliselt kerged (väikese tihedusega)  suhteliselt madala sulamistemperatuuriga

Keemia
7 allalaadimist
thumbnail
18
docx

Keemia: lahused, metallid, gaasid

vett. Siis ilmuvad väiksed vedeliku piisakesed pilvede, udu ja vihmana. TAHKISED Lastes vedelal lahusel tahkestuda, saadakse tahkeid lahuseid. Tahketest lahustest moodustavad olulise klassi sulamid. Sulamid on ühe või mitme metalli või mittemetalli tahked lahused teises metallis, mis moodustab sulamist olulise osa. Võrrelduna algse metalliga, on sulamitel tavaliselt hoopis erinevad omadused. Näiteks on puhas alumiinium väga pehme. Lahustades väikse hulka vaske ja teisi elemente, saadakse vintske kerge sulam, mida nimetatakse duralumiiniumiks. Duralumiinium on eriti kerge, aga väga tugev, nii et seda kasutatakse lennukite kerede ja tiibade valmistamisel. Nagu teistel lahuse tüüpidel, nii on ka tahketel lahustel piirid, kui palju lahustuvat ainet võib seal lahustada. Näiteks on puhas raud pehme, plastiline metall. Lahustades väikse hulga vesinikku sulas rauas, saame terase, mis on palju tugevam

Keemia
20 allalaadimist
thumbnail
16
pdf

IA rühma metallid-kokkuvõte

1. I A RÜHMA METALLID 1.1 I A rühma metallide üldiseloomustus I A rühma metallideks on liitium, naatrium, kaalium, rubiidium, tseesium ja frantsium. I A rühma metalle nimetatakse ka leelismetallideks. Ajalooliselt tuleneb sõna leelismetall sellest, et nende metallide hüdroksiide tunti juba ammu ja neid nimetati leelisteks. Tänapäevane selgitus võiks olla lihtsalt selline, et nende metallide veega reageerimisel tekivad leelised. Leelismetallid on kõige metalsemad elemendid. Aatomi ehituselt kuuluvad nad s-elementide hulka, kuna nende aatomite välisel orbitaalil on üks elekt- 1 ron. Sellest tulenevalt on kõikide leelismetallide aatomite väliskihi elektronvalemiks ns ja oksüdatsiooniastmeks ühendis +I. Kuna leelismetallidel on väliskihis ainult üks elektron, siis seetõttu nad loovutavad selle erakordselt kergesti

Keemia
212 allalaadimist
thumbnail
7
docx

Keemia kokkuvõte

väike tihedus), madal sulamis ei saa valmistada, pehmed, kerged(temeperatuur head elektri ja soojus juhid,puhas metal pind( läikiv ja hõbevalge värvus), neis on metallilised siedemed ja nad on aktiivsed redutseerijad. · Laboris kasutatakse naatriumi ja kaltsiumi, vahel ka liitiumi ja kaaliumi. Keemiatööstuses kasutatakse enamasti naatriumi, seda kasutatakse suhteliselt aktiivsemate metallide saamiseks nende ühenditest. Naatrium lambid- naatiumi aurudega täidetud lambid(tänavavalgustus) Liitiumpatareid. · Ühendid: CaO- kustutamata lubi, Ca(OH) -kustutatud lubi, NaOH-seebikivi, Na CO -pesusooda, NaHCO -söögisooda, NaCl-keedusool, Na SO -elektrolüüdina , CaSo +2/0.5 H O- märg/kuiv kips, Ca (PO ) -väetis, HNO -ilutulestikes p-Metallid · Kõik metallidele omased tunnused. P-metallid on õhu ja vee suhtes vastupidavad metallid.

Keemia
6 allalaadimist
thumbnail
11
doc

Rakenduskeemia konspekt

.................. 7 Redoksreaktsioonid.................................................................................................................8 Võrrandid (tasakaalustamine)................................................................................................. 9 Loeng 1 Raud (Fe) ­ el. Nr. 26, aatommass 55,847 Tihedus 7,87 g/cm3 Sulamistemp. 1535 kraadi C Hea korrosioonikindlus Hõbevalge Keskmise kõvadusega Plastiline Hea soojus- ja elektrijuht Keskmise aktiivsusega metall Reageerib mittemetallidega (sulfiidide, fosfiidide jne. teke) Leelistega ei reageeri Rauasulamid Teras (kuni 2% C) Malm (2-5% C) Roostevabateras (lisandiks Cr) Vask (Cu) ­ el nr 29 (1;18;8;2) aatommass 63,54 Tihedus 8,9 g/cm3 Sulamistemp. 1083 kraadi C Värvus punasest kuldkollaseni Plastiline Väga hea korrosioonikindlus Sepistatav, valtsitav ja traadiks tõmmatav metall Hea soojus- ja elektrijuht Kuumutamisel õhus kattub vask musta värvusega vask(II)oksiidi kihiga

Rakenduskeemia
30 allalaadimist
thumbnail
20
docx

EMÜ keemia eksami kordamsiküsimused

muutused. Põlemine •Mikroskoopiline tase: aatomite vaheliste sidemete muutumine jms. 2Mg+02=2MGO 6. Selgitage millest koosneb teaduslik meetod. •Andmete kogumine. •Seoste otsimine andmekogumites. •Hüpoteesi(de) püstitamine ja eksperimentaalne kontrollimine. •Teooria teostamine: – kvalitatiivsed ja kvantitatiivsed teooriad; – ennustused teooria põhjal; – mudelid. 7. Materjalide füüsikalised omadused: nimetage ja iseloomustage neid. Tihedus, Sulamistemperatuur, Korrosioonikindlus, värvus Erinevaid materjaide grupid (metallid, plastid, keraamika) erinevad üksteisest eelkõige tiheduse (roo) poolest, mille ühik on mahuühikumass, kg/m3. Plastide tihedus on vahemikus 1000-2000kg/m3, keraamikal 1500-2500, metallidel 1700- 22000kg/m3 piires. Temperatuuri, mil materjal läheb üle tardolekust vedelasse, nimetatakse sulamistemperatuuriks (Ts).

Keemia
51 allalaadimist
thumbnail
11
doc

Metallid

elektronkihtidest Aatommass ­ aatomi mass aatommassiühikutes Aatomi tuum ­ aatomi keskosake, moodustab põhiosa aatomi massist, koosneb prootonitest ja neutronitest Ainete segu ­ mitme aine segu, mis koosneb erinevate ainete osakestest Alus ­ e. hüdroksiid on aine, mis annab lahusesse hüdroksiidioone (OH-), metalli katioonide+ ühend hüdroksiidiooniga - Aluseline keskkond ­ ülekaalus on hüdrosiidioonid (OH-), pH>7 Aluseline oksiid ­ metallioksiid, hapniku ühend metalliga Anioon ­ negatiivse laenguga ioon Elementide rühm ­ Mendelejevi perioodilisuse tabelis kohakuti üksteise all asuvate elementide rida, rühma elementidel väliskihis rühma numbrile vastav arv elektrone Elementide periood ­ Mendelejevi perioodilisuse tabelis kõrvuti asuvate elemantide rida, perioodi elementidel perioodi numbrile vastav elektronkihtide arv Füüsikaline nähtus ­ nähtus, milles muutuvad aine füüsikalised omadused

Keemia
38 allalaadimist
thumbnail
14
doc

Keemia alused KT3

­ Pool sellest kulub ammoniaagi sünteesiks. ­ Kolmandik metallide hüdrometallurgiliseks ekstraktsiooniks: Cu2+ (aq) + H2(g) Cu(s) + 2H+ (aq) ­ Margariini tootmine jms. 8. Vesiniku olulisemad ühendid (hüdriidid ja oksiidid): kirjutage nende tasakaalustatud tekkereaktsioonid. · Vesinik annab nii katiooni (H+) kui aniooni (hüdriidioon H-). ­ Hüdriidioon on suure raadiusega ja väga polariseeritav, olles väga tugev redutseerija. NaH(s) + H2O(l) NaOH(aq) + H2(g) · Vesinikside. 9. Leelismetallid (Li, Na, K): leidumine, lihtainete saamine, omadused ja kasutamine. · Perioodilisussüsteemi 1. rühma liikmed leelismetallid (liitium, naatrium, kaalium, rubiidium, tseesium ja frantsium) on väga sarnaste omadustega. · Leelismetalliaatomite valentskihi elektronkonfiguratsioon on ns1. · Leelismetallide omadused tulenevad nende madalast ionisatsioonienergiast. · Leelismetallid on metallidest kõige reaktsioonivõimelisemad. Seega neid puhtal kujul looduses ei esine.

Keemia
27 allalaadimist
thumbnail
15
docx

Keemia põhi- ja keskoolile

2 KNO3= 2 KNO2 + O2 III Amfoteerne oksiid+ HAPE =sool+vesi 2 Zn(NO3)2 = 2 ZnO+ 4 NO2 + O2 Amfoteerne oksiid+ALUS(leelis)+ vesi =kompleksühend 2 AgNO3= 2 Ag + 2 NO2 + O2 ) Amfoteersed oksiidid veega ei reageeri IV Neutraalsed oksiidid ei reageeri ei happe, ei alusega ega veega. Neutraalne oksiid + O2 = kõrgema oksüdatsiooniastmega oksiid Rahvapärased nimetused: CaO- pöletatud lubi, kustutamata lubi; Fe2O3- punane või pruun rauamaak; Fe3O4- rauatagi, magnetiit; Al2O3- boksiit, korund, rubiin, safiir, smirgel; SiO2- liiv; CO2- süsihappegaas, CO- vingugaas; N2O- naerugaas Alused Alused koosnevad metallioonist ja hüdroksiidioonist. Alused on ained, mis liidavad prootoni (H+). Liigitus: Vees lahustuvad alused e

Keemia
28 allalaadimist
thumbnail
4
doc

Kokkuvõte 8 kl keemiast.

O-a väheneb Oksüdeerumine ­ elektronide loovutamine. O-a kasvab. Vesi ­ puhas vesi on läbipaistev, värvuseta, lõhnata ja peaaegu maitseta. 71% kogu maakerast katab vesi. tihedus kõige suurem 4*C juures. Külmumisel vesi paisub, tihedus väheneb. Veel on väga suur erisoojus ja aurustumissoojus. Vesi lahustina ­ maailmas enamkasutatav lahusti. Vees lahustuvad hästi ained, mille osakesed seostuvad tugevasti vee polaarsete molekulidega, nt alused, soolad ja happed. Halvasti lahustuvad vees ained, mille osakestel ei esine olulist vastastiktoimet vee molekulidega, nt parafiin, bensiin, eeter ja paljus süsinikuühendid. Soojusmahtuvus ­ väljendab soojushulka, mis on vajalik kogu vaadeldava ainekoguse soojendamiseks 1*C võrra. Erisoojus ­ näitab soojushulka, mis on vajalik 1g aine temperatuuri tõstmiseks 1*C võrra. Aurustumissoojus ­ kindla ainekoguse aurustamiseks vajalik soojushulk

Üldkeemia
108 allalaadimist
thumbnail
34
pdf

Füüsikaline ja kolloidkeemia

Harilikult tõlgendatakse teooriat mudelina. 7. Aatomiehitus. Aatomi ehituse seosed perioodilisustabeliga. Aatom koosneb positiivse elektrilaenguga aatomituumast, mida ümbritseb negatiivselt laetud elektronkate ehk elektronkest. Viimane jaguneb elektronkihtideks, mis omakorda koosnevad negatiivse elementaarlaenguga elektronidest. Perioodilisustabelist saame teada elemendi elektronide arvu elektronkihtidel, aatommassi suurust ning mis metall see aine on. Liikudes tabelis vasakult paremale ja alt üles suurenevad elementide mittemetallilised omadused ja vähenevad metallilised omadused.Liikudes rühmas ülevalt alla suurenevad metallide keemilised aktiivsused. See on tingitud sellest, et elektronkihtide kasvades kaugeneb väline elektronkiht aatomituumast ja nende külgetõmme väheneb.Liikudes rühmas alt üles suurenevad mittemetallide keemilised aktiivsused. See on tingitud sellest, et elektronkihtide

Füüsikaline ja kolloidkeemia
58 allalaadimist
thumbnail
29
rtf

Konspekt

juurde. Selliseid elektrone nimetatakse vabadeks elektronideks. Metalliaatomid muutuvad seega metallioonideks. Metalliline side on negatiivsete vabade elektronide ja positiivsete metallioonide vastastikune tõmbumine. Vabad elektronid põhjustavad metallide elektri- ja soojusjuhtivust ning plastilisust. 2.8.4 Sideme tüübi määramine. Keemilise sideme tüüpi võib määrata aine koostise järgi (omavahel seotud aatomitejärgi): 1) (aktiivne) metall + (aktiivne) mittemetall iooniline side 2) mittemetall + mittemetall kovalentne polaarne side 3) mittemetall lihtainena kovalentne mittepolaarne side 4) metall lihtainena metalliline side 2.9 Ülesandeid. Määra sideme tüüp järgmistes ainetes: KCl, Na2O, HBr, Cl2, Na, NH3, CH4, LiCl, O2, Al, C. Millised võiksid olla eelmises ülesandes loetletud ainete omadused ­ sulamistemperatuur, kõvadus, elektrijuhtivus, plastilisus? (Juhis: Kas aine on molekulaarne või mittemolekulaarne

Keemia
501 allalaadimist
thumbnail
18
doc

Keemia

veega tekib alus (MgO+H2O -> Mg(OH)2). Amfoteersed oksiidid reagreerivad nii aluste kui hapetega. Tuua näiteid õhus, vees ja maakoores leiduvatest oksiididest. Õhus: Süsinikdioksiid e. Süsihappegaas (CO2), 0,03% Vees: Vesi (H2O), 75% Maa pinnast Maakoores: Liiva põhiline koostisosa ränidioksiid (SiO2), rauaoksiidid (Fe2O3; Fe3O4), alumiiniumoksiid (Al2O3) ja vasemaak kupriit vaskoksiid (Cu2O). Iseloomustada vingugaasi (CO) ja süsihappegaasi (CO2). Süsihappegaas on happeline oksiid, mida leidub nii inimese kehas kui ka sissehingatavas õhus. Selle määramiseks kasutatakse reaktsiooni lubjaveega. Vingugaas on väga mürgine aine, millel puudub nii lõhn kui värvus. Selle eraldumise kohta käib valem: C+CO2 -> 2CO Kui põlemisel on hapnikku piisavalt, tekib CO2, kui aga hapnikku on vähe, tekib vingugaas. Hapnikku puudumisel põlemist ei toimu. 01.09.08 Happed HF ­ vesinikfluoriidhape, ainus hape, mida ei saa hoida klaasanumates. 1. Näiteid tuntud hapetest. 2

Rekursiooni- ja...
19 allalaadimist
thumbnail
304
doc

ELEMENTIDE RÜHMITAMISE PÕHIMÕTTED

molekulis sidemeenergia kõrge: raskesti polariseeritav Neist omadustest tingitud vähene lahustuvus, madal keemis- ja sulamistemp. Atomaarne vesinik Protsess H2 → 2H (väga endotermil.) algab alles üle 2000C; täielikult atomaarne u. 5000C juures (elektrikaares) protsessid 2H → H2 ; H2 + ½O2 → H2O – äärmiselt eksotermil. Kuid atomaarne vesinik võib in statu nascendi vähesel määral tekkida paljudes protsessides (hape + metall, vabanemine metalli (Pd, Pt) pinnalt jmt.). Atomaarne vesinik – paljudes protsessides väga aktiivne redutseerimisreaktsioonid (Marshi reaktsioon) 2.1.4. Kasutamine ¤ peam. keemiatööstuses, eriti NH3, HCl, CH3OH sünteesil vedelate rasvade hüdrogeenimisel (sh. → margariin) vedel vesinik: raketikütus deuteerium ja raske vesi: tuumaenergeetikas, termotuumapommis vesiniku H2 või H (monovesinik) põlemine – metallide lõikamine, keevitamine 2.1.5. Ühendid

Keemia
72 allalaadimist
thumbnail
13
docx

Sissejuhatus keskkonnakeemiasse, keemia.

Erinevalt muudest elementidest on keemilised ja füüsikalised erinevused vesiniku isotoopide vahel suhteliselt suured. Seetõttu on neil erinimetused ja mitteametlikud, ent laialdaselt kasutatavad erisümbolid. Isotoopi massiarvuga 1 nimetatakse prootiumiks ja keemiline sümbol H käib eriti selle isotoobi kohta. Isotoopi massiarvuga 2 nimetatakse deuteeriumiks, mille keemiline sümbol 2H (mitteametlikult D). Vesinikul on ka radioaktiivne isotoop massiarvuga 3 ja poolestusajaga 12,3 aastat. Selle nimetus on triitium ja sümbol 3H (mitteametlikult T). (Erinimetused ja -sümbolid on ka isotoopidel, mis kuuluvad radioaktiivsetesse ridadesse.) Prootiumi aatomi tuum on prooton, mis on elementaarosake. Deuteeriumi aatomi tuum on deuteron, mis koosneb ühest prootonist ja ühest neutronist. Triitiumi aatomi tuum on triiton, mis koosneb ühest prootonist ja kahest neutronist. Deuteerium

Keemia
27 allalaadimist
thumbnail
70
pdf

Rakenduskeemia kordamisküsimused

kovalentsete sidemetega ainete vahel. Olek toatemperatuuril Tahke Vedelik või gaas Polaarsus Kõrge Madal Kuju Kindel kuju puudub Konkreetse kujuga Sulamistemperatuur Kõrge Madal Keemistemperatuur Kõrge Madal Vesinikside on täiendav keemiline side, mille moodustab ühe molekuli negatiivse osalaenguga elektronegatiivse elemendi (F, O, N) aatom teise molekuli positiivse osalaenguga vesinikuaatomiga. Vesiniksidemed tekivad peamiselt ainetes, milles vesinikuaatom on kovalentselt seotud tugevalt elektronegatiivse elemendi aatomiga

Rakenduskeemia
46 allalaadimist
thumbnail
38
docx

Üldkeemia eksami konspekt

 Vabad elektronid põhjustavad metallide elektri- ja soojusjuhtivust ning plastilisust  Metalliline side avaldub kõige selgemalt aktiivsete metallide – leelis- ja leelismuldmetallide korral  Iooniline side:  Iooniline side on ioonidevaheline keemiline side, mis tekib vastasmärgiliste laengutega ioonide elektrilise tõmbumise tulemusena.  Iooniline side esineb aktiivsete metallide ja (aktiivsete) mittemetallide vahel (paljud soolad, mitmed oksiidid ja hüdroksiidid)  Ioonilise sideme tekkeks peab sidet moodustavate elementide elektronegatiivsuse vahe olema vähemalt 1,7.  Vesinikside:  Vesinikside on kuni 10 korda nõrgem kui kovalentne side  Vesiniksidemed tekivad peamiselt ainetes, milles vesiniku aatom on kovalentse sidemega seotud tugevalt elektronegatiivsete elementide fluori, hapniku või lämmastiku aatomiga. Anorgaaniliste ühendite põhiklassid ja nende omadused

Üldkeemia
50 allalaadimist
thumbnail
34
pdf

Üldkeemia

ning sidet nimetatakse mittepolaarseks 11. Teised keemilise sideme liigid: Iooniline side, selle erinevus kovalentsest sidemest. Vesiniksideme olemus ja tekkimise tingimused; vesiniksideme mõju aine omadustele, selle tähtsus eluslooduses. Metalliline side. Iooniline side on ioonidevaheline keemiline side, mis tekib vastasmärgiliste laengutega ioonide elektrilise tõmbumise tulemusena. Iooniline side esineb aktiivsete metallide ja (aktiivsete) mittemetallide vahel (paljud soolad, mitmed oksiidid ja hüdroksiidid). Ioonilise sideme tekkeks peab sidet moodustavate elementide elektronegatiivsuse vahe olema vähemalt 1,7. Iooniline side erineb kovalentsest sidemest suurema elektronegatiivsuse poolest. Vesinikside on kuni 10 korda nõrgem kui kovalentne side. Vesiniksidemed tekivad peamiselt ainetes, milles vesiniku aatom on kovalentse sidemega seotud tugevalt elektronegatiivsete elementide fluori, hapniku või lämmastiku aatomiga.

Üldkeemia
69 allalaadimist
thumbnail
10
doc

II A rühma metallid

Nelja viimast elementi ehk kaltsiumit, strontsiumit, baariumit ja raadiumit nimetatakse ka leelismuldmetallideks. Ajalooliselt tuleneb sõna leelismuldmetall sellest, et nende metallide oksiidid moodustavad veega reageerides leeliseid. Sõna muld kasutati juba keskajal rasksulavate metallioksiidide ja teiste kõrgel temperatuuril sulavate ainete kohta. Aatomi ehitusel kuulvad nad s- elementide hulka, nagu ka leelismetallid. Nende aatomite välisel elekt-2 ronkihil on kaks elektroni, mistõttu nende aatomite väliskihi elektronvalemiks on ns ja nende oksüdatsiooniastmeks ühendites on + II. Kuna II A rühma elementidel on kaks väliselektroni, siis sarnaselt leelismetallidele, loovutavad nad oma väliselektrone üsna kergelt ja on ühtlasi tugevateks redutseerijateks. Kusjuures, mida allpool metallid rühmas paikevad, seda kergemini nad neid loovutavad ja seda keemiliselt aktiivsemad nad on.

Keemia
108 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun