Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Tahkiste struktuur - sarnased materjalid

elektron, valents, tsoonid, juhtivus, keelutsoon, lisand, energiatsoonid, tsoonide, energiatase, tahkiste, ühelt, augu, pooljuhtide, elektrijuhtivus, valise, hübriid, väljatugevuse, liikuda, aukjuhtivus, doonorlisand, energiatasemed, täitumine, suurenemisel, laienevad, omandab, piisab, vastassuunas, konsentratsioon, elektritakistus, electron, jätku
thumbnail
2
docx

Füüsika mõisted gümnaasiumile

laineomaduste tõttu keelatud Lubatud tsoon- on kristallis valentselektronide energiatasemete jagunemisel tekkinud alatasemete kogum, millele vastavad energiad on elektronidele lubatud Valentstsoon - on viimane elektronidega täielikult täidetud lubatud tsoon Juhtivustsoon ­ valentstsoonile järgnev elektronidega täitmata või osaliselt täidetud lubatud tsoon Hübriidtsoon ­ tekib siis, kui kaks viimast tsooni kattuvad Valentselektron ­ elektronkatte välisekihi elektron Auk - tekib, kui eletron lahkub valentstsoonist ja moodustub vakants Kristallid vastavalt energiatsoonidele: · Elektrijuhid (Metallid) ­ tahkised, milles on osaliselt täidetud valentstsoon ja hübriidtsoon · Pooljuhid ­ tahkised, mille valentstsoon on küll täielikult täidetud, kuid keelutsoon on kitsas (1...3eV) · Dielektrikud - tahkised, milles esinevad vaid täielikult täidetud energiatsoonid, keelutsooni laius on 5....10 eV

Füüsika
22 allalaadimist
thumbnail
2
doc

Tsooniteooria

koosnev tahke homogeenne ja regulaarselt korduva ühikrakuga struktuur. Kristallide korrapärase siseehituse välispidiseks väljenduseks on siledate ja kindlate seaduspärasuste alusel moodustunud tahkudega kristallvormid. Kõik kristallid jagatakse kuue süngoonia vahel, mis omakorda koosnevad kolmekümne kahest punktigrupist. Keelutsoon-Vabad elektronid võivad asuda ainult valentsitsoonis või juhtivustsoonis. Tsoonidevahelised alad on aga "keelatud" tsoonid, kus elektronid statsionaarselt olla ei saa. Seetõttu nimetatakse neid energiavahemikke ka keelutsoonideks. Keelutsoon on energiatsoon, millele vastav energiavahemik on elektronidele laineomaduste tõttu keelatud. Lubatud tsoon- on kristallis valentselektronide energiatasemete jagunemisel tekkinud alatasemete kogum, millele vastavad energiad on elektronidele lubatud. Valentstsoon - on viimane

Füüsika
26 allalaadimist
thumbnail
2
doc

Tahkiste struktuur konspekt

Iooniline side tekib positiivsete ja negatiivsete ioonide vahel. Kovalentne side tekib ühtlustunud elektronpaaride vahendusel. 3. Kristallvõre Kristallis on aatomid või ioonid paigutunud korrapäraselt ruumvõresse. Võredefekt ­ kristallvõres esinev defekt (mida mööda kristall murdub): üksikud aatomid/ioonid paiknevad vales kohas mõned võresõlmed on tühjad ehk vakantsed kristallidesse on lisatud teisi keemilisi elemente 4. Energiatsoonid: Lubatud tsoonid ­ kristallis vastavatele valentselektronidele lubatud energiatasemed Keelutsoonid ­ eraldavad lubatud tsoone üksteisest Valentstsoon ­ viimane elektronidega täielikult täidetud lubatud tsoon Juhtivustsoon ­ valentstsoonile järgnev lubatud tsoon, mis on elektronidega täitmata või osaliselt täidetud Hübriidtsoon ­ kaks viimast tsooni täituvad 5. Valentselektron ­ väliskihi elektron

Füüsika
59 allalaadimist
thumbnail
36
ppt

Aatomifüüsika kõkkuvõttev esitlus

Sõnaga "mudel" tähistavad teadlased mitte harjumuspärast odavat vähendatud koopiat, vaid originaaliga sarnaselt funktsioneerivat süsteemi. Aatomimudelid · Demokritos 5. saj. e.Kr. andis aatomile nime ­ jaotamatu, katkilõikamatu. · Rosinakukli mudel ­ Thomson · Planetaarmudel · Bohri mudel · Pilve mudel Aatomimudelid · Thomsoni aatomimudel kujutas endast sfäärilise sümmeetriaga homogeenset positiivset ruumlaengut, mille väljas liigub elektron (avastati 1897). Aatomimudelid · Rutherfordi katse (1911) ja planetaarne mudel. · Rutherfordi mudeli kiire populaarsuse tegelikuks põhjuseks on tema sarnasus Päikesesüsteemiga. Rutherfordi katse Planetaarse mudeli püsivus · Elektron tiirleb aatomis ümber tuuma · Tuuma ümber tiirlev elektron liigub kiirendusega · Kiirendusega liikuvad elektronid tekitavad elektromagnetlained, millega kaasneb elektromagnetkiirgus. Mis juhtuks elektroniga?

Füüsika
55 allalaadimist
thumbnail
3
docx

Aatomikooslus. Laserid.

Näiteks keedusool NaCl ­ ioonside elektronide ,,kinkimise" teel. Need aatomid moodustavad molekuli, kuna nad muutuvad suhteliselt kergesti Na+ positiivseteks ja Cl- negatiivseteks ioonideks. Kui Na ja Cl aatomid satuvad lähestikku, ,,kingib" Na oma väliselektroni Cl-le. Ioonsidemega ühendeid on üsna palju looduses. Kovalentne ehk homeopolaarne side. Tema moodustumisel ühistatakse ikka vastasspinnidega elektronpaarid, üks elektron kummaltki ühinevalt aatomilt. Kovalentse sidemega ainete hul looduses on valdav. Kovalentne side on H2 juhtum. H2 moodustamisel ühistatakse kummagi aatomi 2 elektroni, nad asetuvad ühisesse leiulainesse 2 prootoni ümber. Eeltingimuseks on muidugi see, et mõlemad elektronide spinnid on vastassuunalised. Ühinevate aatomite tuumade tõuge tasakaalustatakse nii, et elektronpilve tihedus on suurim tuumade vahelises alas. 2

Füüsika
14 allalaadimist
thumbnail
9
pdf

Funktsionaalsed materjalid I kontrolltöö vastused

erinevus Elektrostriktsioon Pinge, deformatsioon Deformatsioon, pinge Deformatsioon, Magnetostriktsioon Magnetväli, deformatsioon magnetväli 2.1 Energiatsoonid pooljuhis.Vabade laengukandjate energia sõltuvus impulsist. Pooljuhtide elektrijuhtivus Teatavasti on kristallis aatomite diskreetsed energianivood elektronidele laienenud energiatsoonideks (joonis 2.1). Näiteks Si ja Ge korral on väliskihis 4 elektroni (kaks s ja kaks p elektroni), aga seal on 8 lubatud olekut (nivood): 2 s nivood ja 6 p nivood. Tsoonide moodustamisel jääb 4N nivood valentstsooni ja 4N nivood juhtivustsooni (N on aatomite arv kristallis). Elektronide arv on aga 4N

Funktsionaalsed materjalid
97 allalaadimist
thumbnail
56
ppt

Aatom

Tuumade koostisse kuuluvad positiivse laenguga prootonid ja laenguta neutronitest. Ainukesena on lihtsaima elemendi ­ vesiniku aatomi tuumas ainult 1 prooton. Prootoni laengu absoluutväärtus võrdub elektroni laengu absoluutväärtusega. See moodustab elementaarlaengu,mille väärtus on ~1,6*10-19 C. Aatomi koostisosad. Prooton ja neutron on ligikaudu võrdse massiga, mis on 2000 korda suurem elektroni massist. NIMETUS MASS(kg) LAENG(C) Elektron 9,1*10-31 -1,6*10-19 Prooton 1,6726231*10-27 +1,6*10-19 Neutron 1,674928*10-27 0 Tavaolekus on aatom elektriliselt neutraalne. Seega peab prootonite arv tuumas ja teda ümbritsevate elektronide arv võrdne olema. Seda arvu nimetatakse laenguarvuks Z, mis on tähtsaim aatomit iseloomustav suurus. Vahemaad aatomi osakeste vahel on ülisuured, aatom sisaldab palju tühja ruumi. Planetaarmudeli vastuolud.

Füüsika
154 allalaadimist
thumbnail
11
doc

Materjali keemia ja füüsika

9. Mis on isotoopide tekke aluseks? Ühesuguse elektronide ja prootonite arvuga, kuid erineva neutronite arvuga elemendid 10. Mis määrab ära aine keemilise intediteedi?aine keemilised omadused??? 11. Millistel energianivood on elektronile lubatud aatomis? isoleeritud aatomites võivad elektronid olla vaid diskreetsetel 4 kvantarvuga ja Pauli keeluprintsiibiga määratud energianivoodel. 12. Mis on footon? Vabanev või neelatav energia hulk, mis on vajalik, et elektron vahetaks energianivood. 13. Kirjutage Planck'i võrrand? = h kus, h - Plancki konstant = 6,63 . 10-34 J.sek. 14. Bohri mudel aatomi ehitusele? 15. Defineeri Heisenberg'i määramatuse printsiip? 16. Mis on peakvantarv ja selle lubatud väärtused? Annab elektroni lubatud põhienergianivood, kus tõenäosus vastava kvantarvuga elektroni leidmiseks on suurim. Peakvantarv n võib omada positiivseid väärtusi vahemikus 1 - 7. 17. Mis on kõrvalkvantarv ja selle lubatud väärtused

Füüsika
49 allalaadimist
thumbnail
13
docx

Füüsika konspekt - aatomifüüsika, aatomimudelid

1. teema ­ aatomifüüsika, aatomimudelid Aatomifüüsika käsitleb keemiliste elementide algosakestes - aatomites toimuvaid protsesse. Aatomifüüsika kitsamas mõttes tegeleb aatomite elektronkatete uurimisega; aatomituumas toimuvaid protsesse uurib tuumafüüsika. 1. J. J. Thomson 1903. a. - esimese aatomimudel. Thomsoni aatomimudel kujutas endast sfäärilise sümmeetriaga homogeenset positiivset laengut, mille väljas liigub elektron. 2. Rutherfordi planetaarne aatomimudel ­ 1911.a. Elektronid tiirlevad tuuma ümber, meenutab Päikesesüsteemi ehitust. Oli õige mittekiirgava aatomi suhtes. 3. Bohri aatomimudel ­ 1913.a. Seotud Bohri postulaatitega. Selgitavad, millal aatom kiirgab, millal neelab valguskvante. Rutherfordi katse skeem A - osakeste allikas; K - märklaud (kuldleht);

Füüsika
91 allalaadimist
thumbnail
46
pdf

Teema 3, Pooljuhtseadmed

Vabade elektronide kontsentratsioon pooljuhis on seetõttu võrdeline pooljuhi temperatuuriga. Toatemperatuuril leidub puhtas (omajuhtivusega) ränis ligikaudu 1 vaba elektron 1012 aatomi kohta. Absoluutse nulli lähedastel temperatuuridel muutuvad pooljuhid mittejuhtideks (dielektrikuteks), kuna neis ei leidu enam vabu elektrone. Lahkunud elektroni kohta kovalentsidemes nimetatakse auguks (ingl. k. hole, sks k. Loch (auk), aga ka Defektelektron). Augu võib täita teine elektron, sellest jäänud augu võib täita kolmas jne. Toimub elektroni ja augu rekombinatsioon ja ühtlasi augu ümberpaiknemine suunas, mis on vastupidine elektroni ümberpaiknemisele. Selline nihkeprotsess võib korduda; elektronid, mis pole aatomitega seotud, võivad pooljuhis liikuda ja täita auke. Elektronide liikumise läbi tekkinud elektrijuhtivust nimetatakse n- juhtivuseks ehk elektronjuhtivuseks, aukude liikumisel tekib p-juhtivus ehk aukjuhtivus

Elektroonika alused
100 allalaadimist
thumbnail
73
pdf

Enn Mellikovi materjalifüüsika ja -keemia konspekt

......................................................... 54 6.8. Kokkuvõte ................................................................................................................ 55 7. MATERJALIDE ELEKTRILISED OMADUSED ....................................................................... 56 7.1. Elektrijuhtivus .......................................................................................................... 56 7.1.1. Elektroonne ja iooniline juhtivus ..................................................................... 56 7.2. Tahkete ainete tsooniteooria alused....................................................................... 56 7.3. Juhtivus tsooniteooria ja keemilise sideme teoorias .............................................. 57 7.3.1. Metallid............................................................................................................ 57 7.3.2. Isolaatorid ja pooljuhid ....

Ökoloogia ja...
96 allalaadimist
thumbnail
9
doc

Eksami piletid (materjali füüsika ja keemia)

See on seotud erinevusega aatomite ja ioonide pakketiheduses erinevates kristallograafilistes suundades. 8.Mis on vintdislokatsioonid? Vindislokatsioon on dislokatsioonitüüp, mille puhul ülemine aatomtasapind kristallis on aatomite vahelise vahemaa võrra nihutatud alumise tasapinna suhtes. 9.Mis on materjali elektrilised omadused? Vastumõju temale rakendatud elektriväljale. 10.Mis on n-tüüpi lisandjuhtivus? n-tüüpi lissandjuhtivus on juhtivus kus põhilisteks laengukandjateks on elektronid ja augud on mittepõhilsteks kandjateks. N-tüüpi pooljuhis on Fermi nivoo nihutatud keelutsooni ülaossa ja tema täpne positsioon sõltub temperatuurist ja doonori konsentratsioonist. 11.Mis on faas? 12.Analüüsige puhta aine faasidiagrammi. 5 1.Defineerige materjalide tehnoloogia mõiste? Materjalide tehnoloogia kasutab ära materjaliteaduse fakte ja kavandab nende järgi vastavate omadusega materjale. 2

Füüsika
101 allalaadimist
thumbnail
18
doc

Eksami piletid

kristallvõres tingimusel, et mõlema aine kristallstr on lähedased. 3 pilet 1.Mis määrab ära materjalide omadused?Tema struktuur,ehk osakeste paigutumine materjalis 2.Mis on peakvantarv ja millised on tema lubatud väärtused? Annab elektroni lubatud energianivood, kus tõenäosus vastava kvantarvuga elektroni leidmiseks on suurim. Väärtused on vahemikus 1-7 3.Miks katioonide mõõtmed muutuvad ioonilise sideme tekkimisel ja kuidas? Mõõtmete muutumine on tingitud naatriumi 3s1 elektron äraandmiseks ja vastavalt elektron/prooton suhte muutumisest.Positiivselt laetud tuum Na ioonis Na+ tõmbab elektronpilve endale ligemale, põhjustades raadiuse vähenemise ionisatsioonil.Elektron/prooton suhte suurenemise tõttu kloori aatomi mõõdud ionisatsioonil suurenevad.Seega aatomist katioonide moodustamisel mõõdud vähenevad. 4.Kas kovalentne side on suunatud või ilma suunata?suunatud side,millele on iseloomulik sideme suund ja nurk. 5

Materjali füüsika ja keemia
69 allalaadimist
thumbnail
22
doc

Elektrimaterjalid - konspekt

Aatomite, ioonide ja molekulide vastastikune asend monokristallis kordub suurematel vahekaugustel – kaugkorrastatus. Osakeste paigutuse korrapärasus väikestel vahekaugustel - lähikorrastatus Polükristallid koosnevad paljudest monokristallidest. asetuvad ebaregulaarselt tavaliselt tekkivad sulanud ainete jahtumisel. Kõiki kristalseid aineid iseloomustab kindel sulamistemperatuur Amorfsed ained neis esineb ainult lähikorrastatus, amorfsed ained on isotroopsed, sellesse tahkiste rühma kuuluvad anorgaanilised klaasid ja paljud orgaanilised ained, sulamistemperatuur puudub, see on asendunud pehmenemistemperatuuriga Keeruka ehitusega tahkised väikesed monokristallid asuvad amorfses ümbrises(keraamika ja polümeerid) Plasma koosneb ühe- ja mitmekordselt ioniseeritud aatomitest ja elektronidest, moodustub kõrgel temperatuuril ja elektrilahendustes, suur elektrijuhtivus 2.2. AATOMID JA IOONID 2.2.1 Elektronide olek aatomis

tehnomaterjalid
39 allalaadimist
thumbnail
15
doc

Thomsoni "rosinakukkel" ja Rutherfordi aatomimudel

Kui elektroni liikumise kiirust aatomis tähistada v - ga, siis h h B = = p , mv milles B - De Broglie lainepikkus ja p = m v on elektroni impulss. Kui elektroni liikumine ümber tuuma on seotud lainetega, siis ei tohiks muutuda täistiiru jooksul laineharjade kokkusobimine, s.t. lained peaksid olema faasis - kujult seisulained. Seega elektron peab liikuma orbiitidel, milledele mahub täisarv De Broglie lainepikkusi : 2 r = n B , milles n on täisarv. n=1 n=2 n= 3 3 Viimasest valemist saab arvutada lubatud orbiitide raadiused Bohri aatomimudelis n h r = = n , milles m - elektroni mass , 2 mv 2

Füüsika
333 allalaadimist
thumbnail
108
pdf

Elektroonika alused (õpik,konspekt)

integraallülituste tootmine ja kasutamine jne. See areng jätkub ja on väga raske ette arvata, milliseid üllatusi pakuvad meile järgnevad aastakümned. Ka kõige kaasaegsemate pooljuhtseadiste korral tuleb ikkagi arvestada nende kahe puudusega: omaduste sõltuvusega temperatuurist ja kiiret riknemis-võimalust ülekoormusel. Nende omaduste olemasolu ei tohi kunagi unustada. 4.2. Elektrijuhtivus pooljuhtides Pooljuhtideks nimetatakse suurt hulka aineid, mille elektri juhtivus on elektrijuhtide ja isolaatorite vahepeal. Elektrijuhtide mahueritakistus on vahemikus 10-4... 10-6*cm. isolaatoritel 1010 ... 1018 ·cm ja pooljuhtidele jääb küllaltki suur vahemik 10 ... 10 l 0 * c m. Kõigi pooljuhtide ühiseks oluliseks omaduseks on takistuse vähenemine temperatuuri tõusmisel. Tuntumad pooljuhtmaterjalid on germaanium, räni, seleen, galliumarseniid jt. Tänapäeval kasutatakse kõige enam räni.

Elektroonika
545 allalaadimist
thumbnail
81
doc

Elektroonika aluste õppematerjal

on meil tegemist materjali omajuhtivusega Laengukandjaid on siin kahesuguseid ja eristatakse ka kahesugust juhtivust. Elektronide liikumisest tingitud juhtivust nimetatakse elektronjuhtivuseks ehk N-juhtivuseks (sõnast "negative"), aukude liikumisest tingitud juhtivust aga aukjuhtivuseks ehk P- juhtivuseks(sõnast "positive"). Peale omajuhtivuse on sobivate lisandite lisamisega materjalile võimalik kunstlikult tekitada täiendavat - lisandjuhtivust. Lisanditest tingitud juhtivus on alati üheliigiline, s.t. kas elektron- või aukjuhtivus. Lisandjuhtivuse tekitamiseks lisatakse pooljuhtmaterjalile kas kolme- või viievalentseid lisandeid, mis peavad ise olema võimalikult puhtad ja lisandite hulk peab olema selline, et säiliks ainele tüüpiline kristallstruktuur. Vaatleme esmalt olukorda, kus põhiainele on lisatud viievalentset lisandit, milleks võib olla antimon (Sb), arseen (As) või fosfor (P) Viievalentse lisandi aatom võtab aine struktuuris endale koha

Elektroonika alused
377 allalaadimist
thumbnail
114
doc

Elektroonika alused

Laengukandjaid on siin kahesuguseid ja eristatakse ka kahesugust juhtivust. Elektronide liikumisest tingitud juhtivust nimetatakse elektronjuhtivuseks ehk N-juhtivuseks (sõnast "negative"), aukude liikumisest tingitud juhtivust aga aukjuhtivuseks ehk P- juhtivuseks(sõnast "positive"). Peale omajuhtivuse on sobivate lisandite lisamisega materjalile võimalik kunstlikult tekitada täiendavat - lisandjuhtivust. Lisanditest tingitud juhtivus on alati üheliigiline, s.t. kas elektron- või aukjuhtivus. Lisandjuhtivuse tekitamiseks lisatakse pooljuhtmaterjalile kas kolme- või viievalentseid lisandeid, mis peavad ise olema võimalikult puhtad ja lisandite hulk peab olema selline, et säiliks ainele tüüpiline kristallstruktuur. Vaatleme esmalt olukorda, kus põhiainele on lisatud viievalentset lisandit, milleks võib olla antimon (Sb), arseen (As) või fosfor (P) Viievalentse lisandi aatom võtab aine

Elektriahelad ja elektroonika...
144 allalaadimist
thumbnail
37
docx

Materjaliteadus

puhastusmeetodid. Aga ka materjalis, kus on lisandi aatomit 1 põhiaine aatomi kohta, on ühes moolis lisandeid: 6,02** 6* aatomit. Tihti viiakse materjalisse sisse lisandeid spetsiaalselt (legeeritakse), st kasutatakse sulameid. Lisandid võivad põhiaines moodustada: 1) tahke lahuse; 2) eraldi faasi (tekib faaside mehaaniline segu); 3) keemilise ühendi (moodustab samuti eraldi faasi). Punktdefektidena esineb lisand tahkes lahuses. Tahke lahus (nagu ka vedel) moodustab homogeense segu, kus lisandi aatomid on ühtlaselt jaotunud põhiaines. Tahkeid lahuseid on kaht tüüpi: 1) asendustüüpi ­ lisandi aatomid asendavad põhiaine aatomeid võresõlmedes (joon 3-3); 2) sisendustüüpi ­ lisandi aatomid lähevad võresõlmede vahele (joon 3-4) Asendustüüpi tahke lahuse tekkimine on võimalik, kui: - aatomite raadiused ei erine rohkem kui ±15%; - ainete elektronegatiivsused on lähedased;

Materjaliteaduse üldalused
107 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

100% Q1 = 600 J Q -? Akas - ? 3. kursus ELEKTROMAGNETISM Elektriväli Elektrilaeng on mitme tähendusega mõiste. Keha elektrilaeng q näitab keha osalemise intensiivsust elektromagnetilises vastastikmõjus. Huvitav on massi ja laengu vahekord: mass võib ilma laenguta olemas olla, aga laeng ilma massita ehk laengukandjata mitte kunagi. Elektron kannab negatiivset laengut, prooton positiivset. Keha kui terviku laeng sõltubki nende arvulisest suhtest, sest qe = q p . [ q ]SI =1C (kulon). Elektroni ja prootoni laengut qe = q p = e =1,6 10 -19 C nimetatakse elementaarlaenguks. Keha elektrilaeng saab olla ainult täisarvkordne elementaarlaengust. Elektrilaengu jäävuse seadus: elektriliselt isoleeritud süsteemi kogulaeng on jääv suurus.

Füüsika
1329 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

100% Q1 = 600 J Q -? Akas - ? 3. kursus ELEKTROMAGNETISM Elektriväli Elektrilaeng on mitme tähendusega mõiste. Keha elektrilaeng q näitab keha osalemise intensiivsust elektromagnetilises vastastikmõjus. Huvitav on massi ja laengu vahekord: mass võib ilma laenguta olemas olla, aga laeng ilma massita ehk laengukandjata mitte kunagi. Elektron kannab negatiivset laengut, prooton positiivset. Keha kui terviku laeng sõltubki nende arvulisest suhtest, sest qe = q p . [ q ]SI =1C (kulon). Elektroni ja prootoni laengut qe = q p = e =1,6 10 -19 C nimetatakse elementaarlaenguks. Keha elektrilaeng saab olla ainult täisarvkordne elementaarlaengust. Elektrilaengu jäävuse seadus: elektriliselt isoleeritud süsteemi kogulaeng on jääv suurus.

Füüsika
45 allalaadimist
thumbnail
83
doc

Kordamisküsimused: Elektriväli ja magnetväli.

Aatomimudel on planetaarne mudel, mis tähendab, et elektronid võnguvad ümber tuumade oma ringorbiitidel nii nagu planeedid liiguvad maailmaruumis ümber päikese, välja arvatud see, et aatomid kaotavad energiat aga planeedid liiguvad takistuseta. Aatomi koguenergia E on summa kineetilisest energiast K ja potentsiaalsest energiast U : Bohr'i aatomit kirjeldavat 2 postulaati: 1.Elektronid võivad aatomis liikuda ainult kindlatel statsionaarsetel orbiitidel. Sellisel orbiidil liikudes elektron ei kiirga. (Niisiis, statsionaarsel orbiidil elektron energiat ei kaota ja võib seal püsida igavesti. Edasi on lihtne: selleks, et aatom kiirgaks, peab elektron orbiiti vahetama.) 2.Elektroni üleminekul suurema energiaga orbiidilt väiksema energiaga orbiidile aatom kiirgab kvandi, üleminekul väiksema energiaga orbiidilt suurema energiaga orbiidile aga neelab selle. Kvant-arvud on täisarvulised kordajad, mis tähistavad lainepikkuste arvu orbiidil: peakvantarv n ­ ruumi dimensioon

Füüsika
214 allalaadimist
thumbnail
83
doc

Füüsika eksami küsimuste vastused

Aatomimudel on planetaarne mudel, mis tähendab, et elektronid võnguvad ümber tuumade oma ringorbiitidel nii nagu planeedid liiguvad maailmaruumis ümber päikese, välja arvatud see, et aatomid kaotavad energiat aga planeedid liiguvad takistuseta. Aatomi koguenergia E on summa kineetilisest energiast K ja potentsiaalsest energiast U : Bohr'i aatomit kirjeldavat 2 postulaati: 1.Elektronid võivad aatomis liikuda ainult kindlatel statsionaarsetel orbiitidel. Sellisel orbiidil liikudes elektron ei kiirga. (Niisiis, statsionaarsel orbiidil elektron energiat ei kaota ja võib seal püsida igavesti. Edasi on lihtne: selleks, et aatom kiirgaks, peab elektron orbiiti vahetama.) 2.Elektroni üleminekul suurema energiaga orbiidilt väiksema energiaga orbiidile aatom kiirgab kvandi, üleminekul väiksema energiaga orbiidilt suurema energiaga orbiidile aga neelab selle. Kvant-arvud on täisarvulised kordajad, mis tähistavad lainepikkuste arvu orbiidil: peakvantarv n ­ ruumi dimensioon

Füüsika
140 allalaadimist
thumbnail
109
doc

Füüsikaline maailmapilt

Füüsikaline maailmapilt (II osa) Sissejuhatus......................................................................................................................2 3. Vastastikmõjud............................................................................................................ 2 3.1.Gravitatsiooniline vastastikmõju........................................................................... 3 3.2.Elektromagnetiline vastastikmõju..........................................................................4 3.3.Tugev ja nõrk vastastikmõju..................................................................................7 4. Jäävusseadused ja printsiibid....................................................................................... 8 4.1. Energia jäävus.......................................................................................................8 4.2. Impulsi jäävus ...............................................................

Füüsikaline maailmapilt
72 allalaadimist
thumbnail
31
rtf

Põhivara aines Füüsikaline maailmapilt

Põhivara aines Füüsikaline maailmapilt Maailm on kõik see, mis on olemas ning ümbritseb konkreetset inimest (indiviidi). Indiviidi põhiproblee- miks on tunnetada oma suhet maailmaga ­ omada adekvaatset infot maailma kohta ehk maailma- pilti. Selle info mastaabihorisondi rõhutamisel kasutatakse maailmaga samatähenduslikku mõistet Universum. Maailma käsitleva info mitmekesisuse rõhutamisel kasutatakse maailma kohta mõistet loodus. Religioosses käsitluses kasutatakse samatähenduslikku mõistet ­ (Jumala poolt) loodu. Inimene koosneb ümbritseva reaalsuse (mateeria) objektidest (aine ja välja osakestest) ning infost nende objektide paigutuse ning vastastikmõju viiside kohta. Selle info põhiliike nimetatakse religioossetes tekstides hingeks ja vaimuks. Vaatleja on inimene, kes kogub ja töötleb infot maailma kohta. Vaatleja tunnusteks on tahe (valikuvabaduse olemasolu), aistingute saami

Füüsika
35 allalaadimist
thumbnail
28
doc

põhivara aines füüsikaline maailmapilt

Põhivara aines Füüsikaline maailmapilt Maailm on kõik see, mis on olemas ning ümbritseb konkreetset inimest (indiviidi). Indiviidi põhiproblee- miks on tunnetada oma suhet maailmaga ­ omada adekvaatset infot maailma kohta ehk maailma- pilti. Selle info mastaabihorisondi rõhutamisel kasutatakse maailmaga samatähenduslikku mõistet universum. Maailma käsitleva info mitmekesisuse rõhutamisel kasutatakse maailma kohta mõistet loodus. Religioosses käsitluses kasutatakse samatähenduslikku mõistet ­ (Jumala poolt) loodu. Inimene koosneb ümbritseva reaalsuse (mateeria) objektidest (aine ja välja osakestest) ning infost nende objektide paigutuse ning vastastikmõju viiside kohta. Selle info põhiliike nimetatakse religioossetes tekstides hingeks ja vaimuks. Hing on inimeses sisalduva info see osa, mis on omane kõigile indiviididele (laiemas tähenduses ­ kõigile elusolenditele). Hinge olem

Füüsika
212 allalaadimist
thumbnail
29
doc

Põhivara füüsikas

Põhivara aines Füüsika Maailm on kõik see, mis on olemas ning ümbritseb konkreetset inimest (indiviidi). Indiviidi põhiproblee- miks on tunnetada oma suhet maailmaga ­ omada adekvaatset infot maailma kohta ehk maailma- pilti. Selle info mastaabihorisondi rõhutamisel kasutatakse maailmaga samatähenduslikku mõistet Universum. Maailma käsitleva info mitmekesisuse rõhutamisel kasutatakse maailma kohta mõistet loodus. Religioosses käsitluses kasutatakse samatähenduslikku mõistet ­ (Jumala poolt) loodu. Inimene koosneb ümbritseva reaalsuse (mateeria) objektidest (aine ja välja osakestest) ning infost nende objektide paigutuse ning vastastikmõju viiside kohta. Selle info põhiliike nimetatakse religioossetes tekstides hingeks ja vaimuks. Vaatleja on inimene, kes kogub ja töötleb infot maailma kohta. Vaatleja tunnusteks on tahe (valikuvaba- duse olemasolu), aistingute saamine (rea

Füüsika
121 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

1. Punktmassi kinemaatika. 1.1 Kulgliikumine 1.2 Vaba langemine 1.3 Kõverjooneline liikumine 1.4a Horisontaalselt visatud keha liikumine 1.4b Kaldu horisondiga visatud keha liikumine. 2. Pöördliikumine 2.1 Ühtlase pöördliikumisega seotud mõisted 2.2 Kiirendus ühtlasel pöördliikumisel 2.3 Mitteühtlane pöördliikumine. Nurkkiirendus 2.4 Pöördenurga, nurkkiiruse ja nurkkiirenduse vektorid. 3. Punktmassi dünaamika 3.1. Inerts. Newtoni I seadus. Mass. Tihedus. 3.2 Jõu mõiste. Newtoni II ja III seadus 3.3 Inertsijõud 4. Jõudude liigid 4.1 Gravitatsioonijõud 4.1a Esimene kosmiline kiirus. 4.2 Hõõrdejõud 4.2a Keha kaldpinnal püsimise tingimus. 4.2b Liikumine kurvidel 4.3 Elastsusjõud 4.3a Keha kaal 5 JÄÄVUSSEADUSED 5.1 Impulss 5.1a Impulsi jäävuse seadus. 5.1b Masskeskme liikumise teoreem 5.1c Reaktiivliikumine (iseseisvalt) 5.2 Töö, võimsus, kasutegur 5.3 Energia, selle liigid 5.3 Energia

Füüsika
178 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun