Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Ventilatsioonile kuluva energiahulga arvutus (0)

5 VÄGA HEA
Punktid
Vasakule Paremale
Ventilatsioonile kuluva energiahulga arvutus #1 Ventilatsioonile kuluva energiahulga arvutus #2 Ventilatsioonile kuluva energiahulga arvutus #3 Ventilatsioonile kuluva energiahulga arvutus #4
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 4 lehte Lehekülgede arv dokumendis
Aeg2017-11-14 Kuupäev, millal dokument üles laeti
Allalaadimisi 11 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor kaidi94 Õppematerjali autor
Ehitusfüüsika kodutöö ventilatsioonile kuluva energiahulga arvutus.

Sarnased õppematerjalid

thumbnail
2
doc

Ventilatsioonile kuluva energiahulga arvutus

Kodutöö nr 2 Ventilatsioonile kuluva energiahulga arvutus Leida energiakulu ventilatsioonile jaanuarikuus. Ventilatsiooni õhuhulga määramisel lähtuda energiatõhususe miinimumnõuetest: Üldõhuvahetus 0,42 l/(sm2), Välistingimused: õhutemperatuur -7 oC, RH= 86% Sisetingimused: õhutemperatuur 21 oC, RH = 30% Välisõhu veesisaldus: W= 0,622*pv/(pt-pv) pv= 0,86*338= 290,68 Pa pt= 101325 Pa W=0,622*290,68/(101325 ­ 290,68)= 0,00179 kg/kg Entalpia: H= 1,005*(-7) + 0,00179*(2500 + 1,86*(-7)) = -2,59 kJ/kg Siseõhu niiskusesisaldus: W= 0,622*pv/(pt-pv) pv= 0,30*2486= 745,8 Pa

Ehitusfüüsika
thumbnail
1
docx

Ventilatsioonikulude arvutamine

2. kodune töö Karin Erimäe MT-3 Leida energiakulu ventilatsioonile jaanuarikuus. Ventilatsiooni õhuhulga määramisel lähtuda energiatõhususe miinimumnõuetest: üldõhuvahetus 0,42 l/(sm2), elu- ja magamistubades 1,0 l/ (sm2) või 7 l/s inimese kohta. Välistingimused: õhutemperatuur -7 oC, RH= 86% Sisetingimused: õhutemperatuur 21 oC, RH = 30% Välisõhu veesisaldus: W= 0,622*pv/(pt-pv) pv= 0,86*337,9= 290,59 Pa pt= 101325 Pa W=0,622*290,59/(101325 ­ 290,59)= 0,00179 kg/kg Entalpia:

Ehitusfüüsika
thumbnail
37
doc

Hoonete soojussüsteemid

1. kõikide materjalide soojus omadused 2. Konsruktsioonide geomeetrilised mõõtmed. - Kütte arvutused näite arvude järgi. Kõige sagedamini kasutatakse nö ,,hoone küttekarakteristikut". Saadakse ligikaudsed väärtused. Seda kasutatakse piirkondliku energia planeerimise ül. planeerimisel. - Mõõdetud tarbimisandmete töötlemise alusel. Kus ol läbi töödeldud soojus tarbimise andmed samatüübilistes elamutes. Hoonete soojuskadude detalilne arvutus. See arvutus toimub arvutusmetoodika alusel mis tuuakse ära Eesti projekteerimis normides. ,,Hoone piirde taring" arvutus juhis. See sobib hoone soojuskadude arvutamiseks projekteerimis käigus. Aluseks on võetud see, et piirded on mitmekihilised. Joonisel 49 lk 10 on toodud temp jaotus hoone välis seinas.Summaarne termiline takistus soojusvoolule termiliselt homogeensete kihtitega piirde tarandile 15

Soojustehnika
thumbnail
28
doc

Ehitusfüüsika abimaterjal ja valemid 2018

2018 Abimaterjal aines „Ehitusfüüsika“ Veeauru küllastusrõhk, psat, Pa 25 3300 Veeaurusisaldus õhus, g/m3 17 ,269t psat  610,5 e 237,3 t , Pa, kui t 0 o C , 20 2640 Veeaururõhk, Pa 21,875t 15

EHITUSFÜÜSIKA
thumbnail
24
docx

Ehitusfüüsika I (konspekt)

Valikul arvestatakse tarindi toimivuse, ehitustehnoloogia, majanduslikkuse ning keskkonna mõjudega (hoone energiatõhusus, materjali tootmine, kasutusiga, jäätmed). 3. Piirdetarindi ehitusfüüsikalise toimivuse analüüsi võimalused: arvutuslik analüüs, uuringud labori tingimustes, uuringud välitingimustes Arvutuslik analüüs: Jaguneb statsionaarseks- ja dünaamiliseks arvutuseks. Statsionaarne arvutus - temperatuur ja niiskus tarindis püsivates keskkonnatingimustes. Dünaamiline arvutus - temperatuur ja niiskus tarindis muutuvates keskkonnatingimustes. (Realsemad kliimatingimused; materjalide omadused võivad olla sõltuvuses keskkonna- tingimustest; arvestatakse niiskuse ja soojuse mahtuvusega; arvutus on keerukam). Arvutusliku analüüsi tüüpilised analüüsid: Niiskustehnilise toimivuse kontroll,

Ehitusfüüsika
thumbnail
28
docx

Hoone- ja soojusautomaatika

Hoone- ja saoojusautomaatika Soojusmootorid Üldandmed ja mootorite liigitus Kütuse põlemisel silindril paisub gaas paneb enamjuhtudel kolvi liikuma kusjuures ja kolb sooritab kulgliiklemist aga nn rootormootorites on kolb asendatud pöörleva rootoriga. Tavalistes kolbmootorites kus on tegemist kulgliikumisega muudab väntvõllmehhanism selle energia hoorattakaudu pöörlevaks liikumiseks. Mootori pidevaks tööks on vajalik 1. Gaasi jaotusmehhanism(klapid), mis on oluline, sest ta juhib kütuse ja õhu sisselase silindrisse ja heitegaasi eemaldamist silindris. 2. Toitesüsteem 3. Õlitus 4. Jahutussüsteem Ehituse järgli liigitatakse mootorid 1,2 ja enam silindrilised mootorid. Kasutusala järgi liigitatakse: on mobiilsed mootorid ja statsionaalsed mootorid kusjuures mobiilsed mootorid on laevamootorid, nii bensiini kui diiselmootorid. Statsionaalsed otto ja diisel mootorid üle 1000kW mida kasutatakse elektri ja soojuse tootmiseks koostootmise jaamades. Tarvitatava küt

Soojustehnika
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele. Termodünaamika esimene seadus on energia jäävuse seadus, rakendatuna soojuslikele protsessidele, teine seadus aga määrab kindlaks vahekorra olemasoleva soojuse ja temast saadava mehaanilise töö vahel, st määrab kindlaks soojuse mehaaniliseks tööks muundamise tingimused. Termodünaamika kui teadus hakkas hoogsalt arenem

Termodünaamika
thumbnail
52
doc

Katlatehnika eksami vastused

KORDAMISKÜSIMUSED EKSAMIKS KATLATEHNIKA BOILER ENGINEERING Sügi s 2007 1. Tahk ete kütuste põleta mi s e tehnoloo gi ad Tahkekütuse latentse energia elektrienergiaks muundamise kohta kehtivad samad üldised seaduspärasused, mis gaasja vedelkütuste korralgi. Määravaks on ringprotsessi parameetrid. Tahkete kütuste põletustehnoloogiad võib jagada nelja rühma: · kihtpõletus (restkolded), · tolmpõletus (tolmküttekolded ehk kamberkolded), · keevkihtpõletus (keevkihtkolded) ja · keeris- ja tsüklonpõletus (keeris- ja tsüklonkolded). Omaette rühma moodustavad tahkekütuse gaasistusega jõuseadmed. Selliseks soojusjõuseadme näiteks on integreeritud gaasistusseadmega kombitsükkel. 2. Põlevkivi põletuste h n ol o o gi ad Praegu on põlevkivielektrijaamades kasutusel tolmpõletustehn

Katlatehnika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun