Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Tõenäosusteooria näidisülesanded (4)

5 VÄGA HEA
Punktid
Vasakule Paremale
Tõenäosusteooria näidisülesanded #1 Tõenäosusteooria näidisülesanded #2 Tõenäosusteooria näidisülesanded #3 Tõenäosusteooria näidisülesanded #4 Tõenäosusteooria näidisülesanded #5 Tõenäosusteooria näidisülesanded #6 Tõenäosusteooria näidisülesanded #7 Tõenäosusteooria näidisülesanded #8
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 8 lehte Lehekülgede arv dokumendis
Aeg2011-03-15 Kuupäev, millal dokument üles laeti
Allalaadimisi 357 laadimist Kokku alla laetud
Kommentaarid 4 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor keikri Õppematerjali autor
exeli fail

Sarnased õppematerjalid

thumbnail
10
xlsx

Statistika excel 11,03

1.Praak detaili tootmise tõenäosus on 0,0345. Leida tõenäoseim praagi hulk 500 detaili tootmisel. 0,035 n=500 6,3 p= p=0,035 n*p-q+1 n=17 q= 1-p=0,965 q=1-p 17,935 tõenäoseim praagi hulk on 17 detaili 2. Binoomjaotus Kulli ja kirja visatakase 5x . Leida tõenäosus et kull tuleb peale poole : a) vähem kui 2x b) mitte vähem kui 2x A. m p 0 0,03125 1 0,15625 0,1875 true- sama vastus mis p(a) P(A) 0,1875 EELNEVATE SUMMA B m= P 2 0,3125 3 0,3125 4 0,15625

Statistika
thumbnail
74
xlsx

Statistika kodune töö

Tõenäosus, et teatud korvpallur tabab ühe viskega korvi, on 0,45. p= 0.45 n= 11 0 1 0.0125381105 2 0.0512922703 3 0.125899209 4 0.2060168874 5 0.2359829802 6 0.1930769838 7 0.1128371983 8 0.046160672 9 0.0125892742 10 0.002060063 11 0.0001532278 bab ühe viskega korvi, on 0,45. Korvpallur teeb 16 viset. Kui suur on tõenäoseim korvide arv? p 0.45 p n 16 n 7 0.1968692226 testitud ja õige 6 8 0.1812091708 5 6 0.1684325571 7

Statistika
thumbnail
3
pdf

STATISTIKA ÜLESANDEID ISESEISVAKS LAHENDAMISEKS

ÜLESANDEID ISESEISVAKS LAHENDAMISEKS 1. Abonent on unustanud vajaliku telefoninumbri kaks viimast numbrit (need on teineteisest erinevad) ja valib need juhuslikult. Kui tõenäone on, et ta valib õiged numbrid? P(A) = 0,011. 2. Kaupluses töötab 7 nais- ja 3 meesmüüjat. Ühes vahetuses töötab 3 müüjat. Kui tõenäone on, et ühes juhuslikult valitud vahetuses on 3 meesmüüjat? P(A) = 0,008. 3. Kauplusse saabus 500 komplekti õmblustooteid kolmest vabrikust: 100 komplekti vabrikust K , 150 vabrikust L ja 250 vabrikust M. Vabriku K toodangust kuulub keskmiselt 75 % I sorti. Vabrikute L ja M jaoks on see näitaja vastavalt 90 % ja 80 %. Leida tõenäosus, et huupi võetud komplekt on esimest sorti. (0,82) 4. Loterii iga 10000 pileti kohta loositakse 150 rahalist ja 50 esemelist võitu. Kui tõenäone on ühe piletiga võitmine? (0,02) 5. Kui tõenäone on kähe täringu viskel saada 7 või 8 silma? (0,3056) 6. Ettevõtte toodangust on 95 % sta

Statistika
thumbnail
4
xls

Statistika KT

Tõenäosusteooria ja statistika kontrolltöö nr.1. Variant F 1. (2) Kaks laskurit tulistavad ühte ja sama märklauda. Märklaua tabamise tõenäosus on vastavalt 0,7 ja 0,8. Leida tõenäosus, et märklauda ei tabata kui kumbki tulistab 2 korda. m= p= m= p= 0 0,09 0 0,04 1 0,42 1 0,32 P(A)= 2 0,49 2 0,64 2. (2) Kolm jahimeest laksksid põtra ning tabasid ühe kuuliga. Leida tõenäosus, et tabajaks oli esimen jahimees, kui tabamise tõenäosus on esimesel jahimehel 0,2; teisel 0,4 ja kolmandal 0,6. 3. (3) Kauplus sai 1000 klaaspudelis olevat jooki. Tõenäosus, et vedamisel puruneb üks pudel on 0,0 Leida tõenäosus, et kauplus sai rohkem kui kaks katkist pudelit. 0 0,049787068 P(a) 0,57681 1 0,149361

Statistika
thumbnail
15
doc

Tõenäosusteooria

Kombinatoorika valemeid ja mõisteid · Variatsioonideks n erinevast elemendist k kaupa nimetame ühendeid, mis sisaldavad k elementi antud n elemendist ning erinevad kas elementide või nende järjestuse poolest. Erinevaid variatsioone on A =n(n-1) ...(n-k+1)=n!/(n-k)! · Permutatsioonideks n elemendilisest hulgast nimetame ühendeid, mis sisaldavad kõiki n elementi (üks kord) ja erinevad järjestuse poolest. Erinevaid permutatsioone on Pn=n (n-1) ...1 = n! · Kombinatsioonideks n elemendist k kaupa nimetame ühendeid, mis sisaldavad k elementi (antud n elemendi hulgast) ja erinevad vähemalt ühe elemendi poolest. n! · Erinevaid kombinatsioone on C =A /Pk C nk = ( n - k )!k! Tõenäosusteooria · Sündmuste hulka, kus alati üks sündmus toimub ja see välistab teiste toimumise nimetame sündmuste täissüst

Matemaatika ja statistika
thumbnail
34
doc

TÕENÄOSUSTEOORIA

TÕENÄOSUSTEOORIA 1 Juhuslik sündmus 1.1 Juhusliku sündmuse mõiste. Mingi katse või vaatluse tulemusena toimub teatud sündmus. Sündmusi tähistatakse tähtedega A, B, C, … . Iga sündmust vaadeldakse teatud tingimuste kompleksi olemasolu korral. Näiteks lumi sulab 0 kraadi juures normaalrõhul. Sündmused võib jaotada kolme liiki: 1. Kindel sündmus , mis toimub alati antud tingimuste juures ( päike tõuseb idast ja loojub läände). 2. Võimatu sündmus  , mis ei saa kunagi antud tingimuste kompleksi korral toimuda (rong sõidab maanteel, päike loojub itta). 3. Juhuslik sündmus, mis võib toimuda või mitte toimuda (paarisnumbrisaamine täringuviskel, mündi viskamisel saada kull või kiri). 1.2 Sündmuste vahelised seosed. Sündmuste vahelised seosed on nagu vastavate hulkade vahelised seosed. 1. AB, sündmus B järeldub sündmusest A ehk sündmus A sisaldub sündmuses B. Näiteks: A = (2) ja B = (2;4;6), siis

Tõenäosus
thumbnail
7
docx

Tõenäosusteooria ja matemaatilise statistika kokkuvõte

1. Tõenäosuse mõiste - Sündmuse (klassikaliseks) tõenäosuseks nimetame temas sisalduvate (ehk soodsate) elementaarsündmuste arvu ja kõigi elementaarsündmuste arvu suhet. kindel sündmus, võimatu, juhuslik. Vastandsündmus, selle tõenäosus. - Sündmuse A vastandsündmuseks nimetame sündmust, mis toimub parajasti siis, kui sündmus A ei toimu. 2. Sündmuste summa - Sündmuste A ja B summa on sündmus, mis toimub kui toimub vähemalt üks sündmustest A või B. korrutis - Sündmuste A ja B korrutis on sündmus, mis toimub parajasti siis, kui toimuvad sündmused A ja B. (samaaegselt) vahe - Sündmuste A ja B vahe on sündmus, mis toimub parajasti siis, kui sündmus A toimub aga sündmus B ei toimu. AB 3. Sõltumatud sündmused. - Sündmused on sõltumatud kui: P(A|B)=P(A), ehk sündmuse A tõenäosus ei sõltu sündmuse B toimumisest või mittetoimumisest: Välistavad sündmused - Sündmus

Matemaatika
thumbnail
4
docx

Tõenäosusteooria

Sündmused. Kindel A = {1, 3, 5} ja sündmus B = {1, 2, 3}, perekonnas on sündmus (tähistatakse K) - sündmus, siis A B = AB = {1, 3}.Sündmusi, mis teatud tingimuste korral alati mille korrutiseks on võimatu toimub.Kindlateks sündmusteks on sündmus, nimetatakse üksteist kooliaasta algus 1. septembril, välistavateks.Kui A = igahommikune päikesetõus, vesi on {1, 3, 5} ja B = {2, 4, 6}, siis AB ämbris vedelas olekus kui temperatuur = , siis öeldakse on 10 kraadi. Võimatu sündmused A ja B on sündmus (tähistatakse V) - sündmus, teineteist välistavad. mis antud vaatluse või katse korral Näide7. Olgu täringu kunagi ei toimu. viskel sündmus A = {1, 3, 5} Võimatuteks sündmusteks on näiteks ja sündmus B = {1, 2, 3}, siis AB = tär

Tõenäosusteooria




Meedia

Kommentaarid (4)

deodorajosephamaria profiilipilt
deodorajosephamaria: väga hea, oli kasu !
09:19 29-04-2012
reksss profiilipilt
reksss: Kasulik materjal
15:00 02-12-2013
gardenialady profiilipilt
gardenialady: hea materjal
14:32 01-04-2011



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun