Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matemaatilise analüüsi kollokvium III spikker(2LK) (0)

1 Hindamata
Punktid
Varia - Need luuletused on nii erilised, et neid ei saa kuidagi kategoriseerida

Lõik failist

Matemaatilise analüüsi kollokvium III spikker 2LK #1 Matemaatilise analüüsi kollokvium III spikker 2LK #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2015-01-04 Kuupäev, millal dokument üles laeti
Allalaadimisi 54 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Kryzu Õppematerjali autor
Täiustatud ja kompressitud variant veebis olevatest spikritest.
Minu arvates kõige täielikum spikker III kollokviumi kohta.
Õppejõud Gert Tamberg.

Sarnased õppematerjalid

thumbnail
28
pdf

Kolmas kollokvium

Teooria 3 1.Riemanni summa. Määratud integraali (Riemanni mõttes) definitsioon. Riemanni summa lõigul [a,b] (f) = ∑ . Kui eksisteerib piirväärtus = ∑ , mis ei sõltu [a,b] osalõikudeks jaotamise viisist ega punktide valikust, siis öeldakse, et funktsioon f(x) on integreeruv (Riemanni mõttes) lõigul [a,b] ning seda piirväärtust nimetatakse funktsiooni f(x) määratud integraaliks ehk Riemanni integraaliks lõigul [a,b] ja seda tähistatakse ∫ . 2. Darboux ülem-ja alamsummad. Riemanni summa ja Darboux’ summade seos. Olgu funktsioon f tõkestatud lõigul [a,b]. Siis tükelduse igal osalõigul [ ] leiduvad lõplikud ülemine ja alumine raja ja ning me saame defineerida Darboux’ ülemsumma: ̅ (f)=∑ ja Darboux’ alamsumma:

Matemaatika
thumbnail
12
docx

Matemaatiline analüüs I 3. kollokviumi spikker

Küsimused: 1.Määratud integraali (Riemanni mõttes) definitsioon. Darbouc ülem- ja alamsummad. Riemanni summa ja Darboux’ summade seos-viimane pilt. ∫ f ( x ) dx st ∫ f ( x ) dx=F ( x ) +C . Määramata integraali tuletis on f (¿ ξi) ∆ xi SΠn n võrdne integreeritava funktsiooniga st ( ∫ f ( x ) dx )’= f(x). Tõestus: ( ∫ f ( x ) dx Riemanni summa lõigul [a,b] (f) = ∑¿ .

Matemaatiline analüüs 1
thumbnail
14
doc

Kollokvium III

1. Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata integraal kui tuletise ja diferentsiaali pöördoperaator. Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus F(x) on funktsiooni f (x) mingi algfunktsioon ja C on suvaline konstant (integreerimiskonstant), nimetatakse funktsiooni f (x) määramata integraaliks ja tähistatakse st . Määramata integraali tuletis on võrdne integreeritava funktsiooniga st ( )'= f(x). Tõestus: ( )'= (F(x)+C)'=F'(x)= f(x). d( )= ( )'dx = f(x)dx = F'(x)dx= dF(x). Operaatorit L:V->W nimetame lineaarseks kui on täidetud tingimused: a)L(f+g)= L(f) + L(g) kui f, g V (aditiivsus) b) L(cf) = cL(f) kui f V ja c R (homogeensus). Määramata integraal on lineaarne operaator, st =

Matemaatiline analüüs
thumbnail
2
pdf

Matemaailine analüüs I kollokvium III spikker

1). (Algfunktsiooni definitsioon. Määramata integraali definitsioon. Määramata 7).(Lihtsamate osamurdude integreerimine. Valemite tuletamine). 12. (Näidata, et kui funktsioonid f (x) = g(x) välja arvatud lõplikus arvus punktides, siis integraal kui tuletise ja diferentsiaali pöördoperaator). Tõestame selle järelduse juhul, kui g(x) f(x) vaid punktis x=c [, ]. () Funktsiooni f algfunktsiooniks nimetatakse funktsiooni F, mis rahuldab tingimust [, ] selle lõigu tükeldus, kusjuures [-1 , ]. Kuna g(x) = O(1) (x[a,b]) F'(x) = (x)= f(x). Definitsioon (määramata integraal) Avaldist kujul F(x) + C; kus

Matemaatika analüüs i
thumbnail
3
docx

Kollokvium integraal

Funktsioon uurimine 1. Määramispiirkond; 2. Graafiku sümmeetria; 3. Perioodilisus ( paaris või paaritu); 4. Katkevuspunktid ja pidevuspiirkonnad; 5. Nullkohad ja negatiivsus- ja positiivsuspiirkonnas; 6. Lokaalsed ekstreemumid ja range monotoonsuse piirkond; 7. Graafiku käänupunktid ja kumerus- ning nõgususpiirkonnad; 8. Graafiku püstasümptoodid; 9. Graafiku kaldasümptoodid; 10. Skitseerime graafiku. Integraal Def1 Öeldakse, et funktsiooni F ( x ) on funktsiooni f ( x ) algfunktsioon hulgal X, kui iga x X korral . Lause1 Kui funktsioon F1 ( x ) ja F2 ( x ) on funktsiooni f ( x ) algfunktsioonid, siis leidub selline reaalarv c, nii et F1 ( x ) = F2 ( x ) + c. Def2 Avaldist kujul F ( x ) + C, kus F ( x on funktsiooni f ( x ) mingi algfunktsioon ja C on suvaline kon

Matemaatiline analüüs
thumbnail
82
docx

Matemaatiline analüüs I kordamine eksamiks

1. Reaalarvud Reaalarvude hulga R kirjeldamisel peab oskama välja tuua järgmist: 1) Q ⊂ R – ratsionaalarvude hulk sisaldub reaalarvude hulgas 2) Aritmeetika (tehted reaalarvudega) ja järjestus Aritmeetika. Eeldame, et hulgas R on defineeritud reaalarvude liitmine ja korrutamine järgmiste omadustega: (A1) a + b = b + a kõikide a,b € R korral (liitmise kommutatiivsus) (A2) (a + b)+ c =a +(b + c) kõikide a,b,c € R korral (liitmise assotsiatiivsus) (A3) b + 0 = b iga b € R puhul (nullelemendi olemasolu) (A4) iga b € R puhul leidub -b € R korral omadusega b + (-b) = 0 (vastandelemendi olemasolu) (M1) ab = ba kõikide a,b € R korral (korrutamise kommutatiivsus) (M2) (ab) c = a (bc) kõikide a,b,c € R korral (korrutamise assotsiatiivsus) (M3) 1b = b iga b € R puhul (ühikelemendi olemasolu) (M4) iga b € R \ {0} puhul leidub b-1 € R omadusega bb-1=1 (pöördelemendi olemasolu) (D) (a + b)

Matemaatiline analüüs
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

. . . . . . . . . . . . . . . . . . . . . 12 1.2.1 Naturaalarvud, täisarvud, ratsionaalarvud . . . . . . . . . . . . . . . . . . . 12 1.2.2 Täieliku järjestatud korpuse konstruktsioon . . . . . . . . . . . . . . . . . . 13 1.3 Ratsionaalarvud järjestatud korpuses . . . . . . . . . . . . . . . . . . . . . . 15 1.3.1 Naturaalarvud. Matemaatilise induktsiooni meetod . . . . . . . . . . 15 1.3.2 Ratsionaalarvude alamkorpus . . . . . . . . . . . . . . . . . . . . . . 19 1.4 Täieliku järjestatud korpuse ühesus. Reaalarvude definitsioon . . . . . . . . 20 1.5 Reaalarvude korpuse omadused . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.1 n-astme juur positiivsest reaalarvust

Algebra I
thumbnail
26
pdf

Matemaatilise analüüsi kollokvium nr.1

1. Arvrea mõiste. Arvrea osasumma ja koonduvus. Näiteid koonduvate ja hajuvate arvridade kohta. Avaldist , kus on reaalarvud, nimetatakse arvreaks. Selle rea esimese liikme summat nimetatakse selle rea -ndaks osasummaks, st. Eeltoodud rida nimetatakse koonduvaks, kui selle rea osasummade jada { } on koonduv, st , kusjuures suurust S nimetatakse selle rea summaks. Kui ei eksisteeri lõplikku piirväärtust siis nimetatakse seda rida hajuvaks. Näide 1. Uurime rea koonduvust. Et siis , seega see rida on hajuv. Näide 2. Uurime rea koonduvust. Tegu on positiivse arvreaga, sest Võrdleme seda rida geomeetrilise reaga , see geomeetriline rida on koonduv, sest ja . Et

Matemaatiline analüüs 2




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun