Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Kategooria matemaatiline analüüs - 4 õppematerjali

Matemaatika >> Matemaatiline analüüs
thumbnail
7
doc

Matemaatilise analüüsi eksamikordamine

Tõestamisülesanded (1) 1. Osata tõestada, et mingi antud funktsioon on pidev etteantud piirkonnas (loengus näide e funktsiooni y = sin x kohta). 2. Tuletada funktsiooni y = sin x tuletise valem. 3. Tuletada funktsiooni y = cos x tuletise valem. Valem 1: + - cos - cos = -2 sin sin 2 2 y= cos (x+x) ­ cos x= (kasutad nüüd valemit 1) : = - 2 sin (x+x+x / 2) * sin (x+x ­x / 2) = -2 sin (2x/2 + x/2) * sin x/2= =-2 sin (x + x/2) * sin x/2 y/x= - 2 sin (x + x/2) * sin x/2 = - sin x/2 * sin (x+ x/2) x x/2 y'= lim - sin x/2 * sin (x+ x/2) = lim - sin x/2 * lim sin (x+ x/2) = - sin x x -> 0 x/2 -> 0 x -> 0 x/2 x/2 See ringi sees = -1 4. Tuletada funktsiooni y = arc sin x tulet...

Matemaatika → Matemaatiline analüüs
76 allalaadimist
thumbnail
1
doc

Matemaatilise analüüsi teisendamise valemid

astendamine juurimine korrutamise abivalemid teguriteks lahut. a0=1 n m (a+b)2=a2+2ab+b2 ax2+bx+c= am = an a(x-x1)(x-x2) am·an=am+n n ab = n a n b (a-b)2=a2-2ab+b2 am:an=am-n a n a (a+b)3=a3+3a2b+3ab2+b3 n = n b b m n mn (a ) =a n m a = nm a (a-b)3=a3-3a2b+3ab2-b3 (ab)n=anbn nm a n p = m a p a2-b2=(a+b)(a-b) (a:b)n=an:bn a3+b3=(a+b)(a2-ab+b2) 1 a3-b3=(a-b)(a2+ab+b2) a -n = an

Matemaatika → Matemaatiline analüüs
28 allalaadimist
thumbnail
6
docx

Matemaatilise analüüsi eksamiks valmistumine

Kordamisküsimused 1. Funktsioon - Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Funktsiooni esitusviis: tabelina, graafikuna. Funktsiooni analüütiline esitusviis on ilmutatud, ilmutamata, parameerilisel kujul. 2. Funktsioonide liigitus (paaris- ja paaritud funktsioonid, perioodilised funktsioonid, monotoonsed funktsioonid, tõkestatud funktsioonid). Tuua näiteid. paarisfunktsioon - Funktsiooni y = f (x) nimetatakse paarisfunktsiooniks, kui f (-x) = f (x) Paarisfunktsiooni graafik on sümmeetriline y-telje suhtes paaritu funktsioon - Funktsiooni y = f (x) nimetatakse paarituks funktsiooniks, kui f (-x) = -f (x). paaritu funktsiooni graafik on 0 punkti suhtes sümmeetriline perioodiline funktsioon - Funktsiooni f (x) nimetatakse perioodiliseks, kui l...

Matemaatika → Matemaatiline analüüs
138 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs kontrolltöö

MITME MUUTUJ A FUNKTSIOON. PIIRV ÄÄRTUS. DIFERENTSEERIMINE Mitme muutuja funktsioon Mitme muutuja funktsiooni üldkuju: w = f ( x, y , z ,...) ( x, y, z ,...) D Kahe puntki vaheline kaugus: Puntkide P1 = ( x1 , y1 , z1 ,...) ja P2 = ( x2 , y 2 , z 2 ,...) vaheliseks kauguseks nimetatakse reaalarvu d ( P1 , P2 ) = ( x1 - x2 ) 2 + ( y1 - y2 ) 2 + ( z1 - z 2 ) 2 + ... . Punkti -ümbrus: Olgu mingi arv. Punkti P0 = ( x0 , y0 , z 0 ,...) -ümbruseks U ( P0 ) nim. kõigi selliste punktide P = ( x, y , z ,...) hulka, mille kaugused punktist P0 on väiksemad kui , s.t d ( P, P0 ) = ( x - x0 ) 2 + ( y - y0 ) 2 + ( z - z0 ) 2 + ... < . Hulga sisepunkt: Punkti P0 D nim. hulga D sisepunktiks kui leidub punkti P0 selline -ümbrus, mis kuulub hulka D, s.t U ( P0 ) D . Hulga rajapunkt: Punkti P0 ni...

Matemaatika → Matemaatiline analüüs
119 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun