Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Konstruktsioonimaterjalide tehnoloogia test1 - Metallurgia - sarnased materjalid

tera, kõvadus, räbu, kristallvõre, plastsus, süsinik, löögisitkus, terasel, poor, maagist, tõmbetugevus, katkevenivus, paagutamine, eutektoidne, faaside, jahtumise, vakants, elektrolüüs, redutseerimine, nikli, voolavuspiir, katkeahenemine, grafiit, pulbermetallurgia, külmhapruslävi, elektrometallurgia, materjaliks, lisand, eutektikum, tardunud
thumbnail
19
docx

Konstruktsioonimaterjalide tehnoloogia Test 3. - Survetöötlus

Flag question Küsimuse tekst Millest lähtuvalt valib tehnoloog kuumsurvetöötluse temperatuuri (teraste näitel)? Vali üks: a. sulamistemperatuurist ja faaside piirkondadest b. ainult sulamistemperatuurist c. kasutatavate seadmete piirangutest d. mehaanilistest omadustest Küsimus 9 Vale Hinne 0,00 / 1,00 Flag question Küsimuse tekst Millised on nõuded külmsurvetöödeldavate metallisulamite omadustele? Vali üks: a. väike kõvadus, ebaühtlane struktuur b. madal voolavuspiir, ühtlane struktuur c. väike elastsusmoodul, kõrge Tsul d. madal tõmbetugevus, kõrge löögisitkus Küsimus 10 Õige Hinne 1,00 / 1,00 Flag question Küsimuse tekst Millist termotöötlusviisi kasutades on võimalik kõrvaldada deformeeritud metalli kalestusnähud? Vali üks: a. noolutamist b. lõõmutamist c. rekristalliseerumist d. kalestumist Küsimus 11 Õige Hinne 1,00 / 1,00

Konstruktsioonimaterjalide...
373 allalaadimist
thumbnail
36
docx

Konstruktsioonimaterjalide tehnoloogia

MTT0010 Konstruktsioonimaterjalide tehnoloogia Punktid 27/33 Hinne 33, maksimaalne: 40 (82%) Küsimus 1 Valmis Hinne 0 / 1 Märgista küsimus Küsimuse tekst Milline nimetatud terastest on suurema kõvaduse ja tugevusega (nii lõõmutatult kui karastatult)? Vali üks: a. järeleutektoidne teras b. eutektoidne teras c. eeleutektoidne teras d. eutektiline teras Küsimus 2 Valmis Hinne 1 / 1 Märgista küsimus Küsimuse tekst Happeliseks kuumuskindlaks materjaliks on Vali üks: a. samott b. grafiit c. magnesiit d. dinas Küsimus 3 Valmis Hinne 1 / 1 Märgista küsimus Küsimuse tekst Mis on eutektoid? Vali üks: a. tardunud faasist samaaegselt tekkinud faaside segu b. vedelfaasist samaaegselt tekkinud keemilised ühendid c. vedelfaasist samaaegselt tekkinud faaside segu d. tard

Masinaelemendid
18 allalaadimist
thumbnail
20
doc

Metallurgia e-test

Question 1 Complete Mark 1.00 out of 1.00 Flag question Question text Kuidas muutuvad terase kõvadus ja plastsus süsinikusisalduse kasvades? Select one: a. süsinikusisaldus ei mõjuta neid omadusi b. kõvadus tõuseb, plastsus suureneb c. kõvadus langeb, plastsus suureneb d. kõvadus tõuseb, plastsus väheneb Question 2 Complete Mark 1.00 out of 1.00 Flag question Question text Millise reaktsiooniga toimub väävli eraldumine terasest? Select one: a. FeS + CaO CaS + FeO - Q b. FeS + Mn MnS + Fe + Q c. MnS + CaO CaS + MnO - Q d. 2FeO + Si2Fe + Si + Q Question 3 Complete Mark 1.00 out of 1.00 Flag question Question text Millised on kristallvõre defektid? Select one: a. vakants, dislokatsioon, punktdefekt b

Konstruktsioonimaterjalide...
165 allalaadimist
thumbnail
8
doc

Metallurgia ja pulbermetallurgia

1. (Points: 2.5) Milline reaktsioon toimub terase ,,keemise" ajal? 1. FeO + C Fe + CO ­ Q 2. 2Fe + O2 2FeO + Q 3. FeO + C Fe + CO + Q 4. S + O2 SO2 2. (Points: 2.5) Ferrosiliitsiumit ja ferromangaani kasutatakse terase tootmisel 1. räbu moodustamiseks 2. tsementiidi moodustamiseks 3. lisandite oksüdeerimiseks 4. redutseerimiseks 3. (Points: 2.5) Terase kvaliteedi tõstmiseks degaseerimise teel kasutatakse 1. sünteetilisi räbusteid 2. vaakumkaarümbersulatust 3. elektrolüüsi 4. elekterräbuümbersulatust 4. (Points: 2.5) Kõige levinumaks terase tootmise meetodiks on 1. hapnikkonvertermeetod 2. elektriinduktsioonahjumeetod 3. martäänmeetod 4. elektrikaarahjumeetod 5. (Points: 2

Konstruktsiooni materjalid ja...
231 allalaadimist
thumbnail
26
docx

Metallide tehnoloogia, materjalid eksam 2015

1. Aatomi ehituse skeem suhtena. Kõvaduse määramine Rockwelli meetodil Kõvadus Rockwelli meetodil määratakse sissesurumise jälje sügavuse järgi: teraskuul läbimõõduga 1,6 mm ja jõud 980 N (100 kgf) – skaala B; teemantkoonus tipunurgaga 120° ja jõuga 580 N (60 kgf) või kõvasulamkoonus jõuga 1470 N

Materjaliõpetus
179 allalaadimist
thumbnail
19
rtf

Exami piletite vastused

põhimetalli omadustele. Kuna paljud ehituskonstruktsioonid töötavad tihti madalatel temperatuuridel ja dünaamilistel koor- mustel, siis üheks tähtsamaks omaduste näitajaks on külmahapruslävi. Ehitusterastena kasutatakse: · tavasüsinikteraseid, · mangaanteraseid, · peenterateraseid, · parendatud teraseid, · boorteraseid. 5) Masinaehitusterased ja nende omadused. Kasutamine. Tsementiiditavate terastena kasutatakse madalsüsinikteraseid (0,1...0,25%C), mille kõvadus peale tava- karastust on väike. Peale tsementiitimist (pinnakihi rikastamist süsinikuga, C-sisaldus viiakse ca 1%-ni), karastamist ja madalnoolutamist on nende pinnakõvadus 58...62 HRC, südamiku kõvadus aga 30...42HRC. Tsementiiditavate teraste südamik peab olema heade mehaaniliste omadustega, eriti tähtis on kõrge voolavuspiir, mille tagab eelkõige peeneteraline struktuur. Ka pinnakihis on oluline peeneteraline

176 allalaadimist
thumbnail
47
docx

Tehnomaterjalide eksami materjal

piiramatuks. Piiramatu asendtardlahuse tekkimise eeltingimuseks on: 1)Komponentide tüübilt ühesugused kristallvõred. 2)Komponentide ligilähetased aatomi raadiused (aatomi raadiuste erinevus R 15 %). Kristallvõrede samakujulisust ja aatomi raadiuste ligilähedust nim. isomorfismiks ja seda tüüpi tardlahused moodustuvad Ag-Au, Ni-Cu, Mo-W, V-Ti jt süsteemide sulameis. b)Sisendustardlahus - sisendustardlahuse korral paigutuvad lahustuva komponendi aatomid eelkõige lahustajakomponendi kristallvõre suurematesse tühikutesse(pooridesse), näiteks kristallvõre K12 korral kuubi keskele. Sisendtardlahuste korral paigutuvad lahustaja kompnendi (nt Fe,Cr,Mo jt) kristallvõresse eelkõige väikese aatomi raadiusega mittemetalli aatomid (C, N, H jt) (joonis 1.33b, lk30). Kuna tühikute(pooride) arv, kuhu võivad paikneda lahustunud komponendi aatomid, on piirataud, siis saavad sellised lahused olla ainult piiratud lahustuvusega.

Tehnomaterjalid
450 allalaadimist
thumbnail
86
pdf

Materjalid

Metallid on ained, millel on tahkes olekus line või heksagonaalne kristallivõre: iseloomulik läige, hea elektri- ja soojusjuhtivus ning - ruumkesendatud kuupvõre: Cr, Fe, Mn, Mo, tavaliselt ka hea mehaaniline töödeldavus, suur V, W ; plastsus ja elastsus. Metallide omadused on - tahkkesendatud kuupvõre: Ag, Al, Cu, Co, Cu, seletatavad aatomi tuumaga nõrgalt seotud vabade Fe, Ni, Pb, Pt, Sn; elektronide (valentselektronide) olemasoluga nende - kompaktne heksagonaalvõre: Be, Cd, Co, Cr, kristallivõre aatomite välimises elektronkihis. Mg, Ti, Zn

335 allalaadimist
thumbnail
56
docx

Stenogramm eksamiks kokkuvõttev konspekt

Eutektoidmuutus - eutektoidsele koostisele ja temperatuurile vastav faasimuutus, mis seisneb tardfaasi ümberkristalliseerumises kaheks või enamaks uueks tardfaasiks. Tekkinud tardlahuste kristallide segu nim. eutektoidiks. Sulamite liigitus: terased ja malmid, nende struktuurid. Terased Terase puhul on tegu mitmekomponentse sulamiga, mis peale süsiniku sisaldab ka tavalisandeid (süsinikteraseid) ja legeerivaid elemente (legeerteraseid). Teraste C-sisalduse suurenedes kasvavad nende kõvadus ja tugevusnäitajad, vähenevad aga plastsus- ja sitkusnäitajad. Teraste liigutused on järgmised: 1) alaeutektoidterased - nende teraste C-sisaldus on kuni 0,8%. Koosnevad ferriidist ja perliidist. Mida suuremaks läheb nende teraste süsinikusisaldus, seda rohkem hakkab vähenema ferriidi kogus ja suurenema hakkab perliidi kogus. 2) eutektoidteras - selle terase C-sisaldus on täpselt 0,8%. Tema struktuur koosneb ainult perliidist.

Tehnomaterjalid
25 allalaadimist
thumbnail
72
pdf

Keemia ja materjaliõpetus (YKI3030) eksami kordamisküsimused ja vastused 2016/2017

) 3. Keemilise koostise järgi: • Süsinikterased - suure ja väikese C sisaldusega •Legeeritud terased (kroomteras, kroomnikkel, mangaanterased jt.) 4. Kvaliteedijärgi: • Kõrge kvaliteediga terased; vähe väävlit ja fosforit • Tavalise kvaliteediga. Rohkem väävlit ja fosforit. Terase kvaliteet saavutatakse sulami ümbersulatamisel süsiniku taandamisprotsessi režiimi valikuga. 5. Struktuuri järgi: Faaside ja tera suuruse saamisel rakendatakse termilist töötlemist. *Valuteras- lisatakse Si, et parandata terase vedelvoolavust. Niisugused terased täidavad hästi valuvorme. *Süsinikteras- kõrgekvaliteedilistes terastes on vähendatud väävli ja fosfori sisaldust. 92. Värvilised metallid  Liigitatakse: a) tiheduse järgi: • kergemetallid - 5 g/dm3 (Al, Mg, Ti), • keskmetallid 5 – 7,8g/dm3 (Sn, Zn, Cr),

Keemia ja materjaliõpetus
42 allalaadimist
thumbnail
32
docx

Mõisted

meetodite abil saavutatakse üha erinevamaid oma- 0,06%. Malmid sisaldavad võrreldes terastega duste kombinatsioone. Selle teeb võimalikuks eel- rohkem fosforit (0,1...0,2%), mis parandab malmide kõige raua polümorfism. valuomadusi, eelkõige vedelvoolavust. Süsinik Tabel 1.8. Tavalisandid terastes C-sisalduse suurenedes kasvab terase kõvadus, tõmbetugevus ja voolavuspiir ning vastupanu väsi- Lisand Sisaldus Mõju terases muspurunemisele; vähenevad aga plastsus- ning %, kuni sitkusnäitajad. Si 0,5 Viiakse terasesse Süsinik avaldab mõju ka terase külmahap- valmistusprotsessis ruslävele, soodustades terase haprumist madalatel

70 allalaadimist
thumbnail
30
docx

TEHNOMATERJALIDE EKSAM

3. Metallide ja sulamite füüsikalised omadused. Tihedus - on homogeense aine mass ruumalaühiku kohta. Ühik: kg/m³. ●Kergmetallid ρ<5000 kg/m³ ●Raskmetallid ρ>10 000 kg/m³ ●Keskmetallid ρ=5000...10 000 kg/m³ Sulamistemperatuur - temperatuur, mil materjal läheb üle tardunud olekust vedelasse. ●Kergsulavad metallid Ts<327 °C ●Rasksulavad metallid Ts>1539 °C ●Kesksulavad metallid Ts=327...1539 °C Kõvadus - materjali võime vastu panna kohalikule plastsele deformatsioonile, kui tema pinda tungib suurema kõvadusega keha. Kõvadust määratakse otsaku toime järgi materjali pinnasse. Otsak on vähedeformeeruvast materjalist kuuli, koonuse või püramiidi kujuga. Brinelli, Rockwelli ja Vickersi kõvadus. Elastus – ehk elastsusmoodul, iseloomustab suhtelise risti- ja pikideformatsioonide suhet tõmbel (survel). 4. Metallide ja sulamite mehaanilised omadused.

tehnomaterjalid
48 allalaadimist
thumbnail
7
docx

Metallide tehnoloogia kontrolltöö kordamiseks

kompaktne heksagonaalvõre: Be, Cd, Co, Cr , Mg, Ti, Zn. KRISTALLVÕRET ISELOOMUSTAVAD SUURUSED · Võre periood · Võre baas · Võre koordinatsiooniarv · Aatomiraadius · Võre kompaktsusaste Polümorfism. Mõnedel metallidel on sõltuvalt temperatuurist enam kui üks kristallivõre t üüp. Metallid on ained, millel on tahkes olekus iseloomulik läige, hea elektri- ja soojusjuhtivus ning tavaliselt ka hea mehaaniline töödeldavus, suur plastsus ja elastsus. Purustavad katsed (teimid) Tõmbeteim. Vastavalt standardile EVS-EN 10002-1 (Metall- materjalid. Tõmbeteim) määratakse tõmbeteimiga materjali tugevus- ja plastsusnäitajad. (Tõmbetugevus,voolavuspiir, tinglik voolavuspiir, katkevenivus,katkeahenemine). Löökpaindeteim Katsetamine löökpaindele on materjali sitkus-näitajate määramise põhiline meetod. Väsimusteim

Materjalitehnika
37 allalaadimist
thumbnail
10
docx

Tehnomaterjalid-Eksam

keemiline ühend- Keemilised ühendid erinevad tardlahusest selle poolest, et nendel on komponentide kristallivõredest erinev kristallivõre. 7. Fe-Fe3 C faasidiagramm. Faasid rauasüsinikusulamites: Nende olemus ja omadused Ferriit - α-rauas väga väike: temperatuuril 727 °C 0,02%, toatemperatuuril 0,01%. δ-ferriidi puhul on maksimaalne süsiniku lahustuvus 0,1%. Ferriiti iseloomustab: — ruumkesendatud kuupvõre (K8) — väike tugevus ja kõvadus — suur plastsus Tsementiit - Keemiline ühend Fe3C 6,67% C Iseloomulik suur kõvadus (820 HB), - habras. Austeniit - Süsiniku tardlahus max 2,14% C γ-rauas. Kõvadus suurem kui ferriidil — Sitke ja hästi deforeeritav nii kuumalt kui külmalt — Mittemagnetiline Struktuurivormid rauasüsinikusulamites: Nende olemus ja omadused Ledeburiit - eutektne segu C-sisaldusega 4,3%, mis tekib vedelfaasi kristalliseerumisel temperatuuril 1147 °C

Materjaliõpetus
17 allalaadimist
thumbnail
58
pdf

Metallide Tehnoloogia 2. Referaat

1. Ahjutäidis 2. Suue 3. Kaevas 4. Mõhk 5. Turi 6. Kolle 7. Malm 8. Räbu A Kütuse põlemine (1800 - 2000°C) B Otsene redutseerimine (1000 - 1400°C) Joonis 4. Kõrgahi C Kande redutseerimine (400 – 1000 °C) Kõrgahjuprotsess seisneb oksiidse rauamaagi redutseerimises koksi abil. Koksi toodetakse

Metalliõpetus
57 allalaadimist
thumbnail
8
pdf

Terased

Eutektoidteras C-sisaldusega 0,8 % ja struktuur 100%-liselt perliit (ferriidi-tsementiidi segu). Alaeutektoidterased C-sisaldusega kuni 0,8%, struktuuriga ferriit-perliit. Terased hakkavad C- sisaldusest 0,05%. Alla selle ei ole teras, vaid puhas raud. Sest väiksema C-sisaldusega ei kasutata. Üleeutektoidsed terased ­ C-sisaldus üle 0,8% kuni 2,14%. struktuur perliit-tsementiit (perliidi terade vahel on sekundaarse tsementiidi võrk). Terase struktuur ja omadused (kõvadus, tugevus, plastsus, sitkus) sõltuvad eelkõige terase C- sisaldusest ehk põhilisandist. TUGEVUS (määratakse tõmbeteimiga) Mida rohkem terases on süsinikku, seda suurem on kõvadus ­ kuni 0,8%ni. Kui C-d on üle 0,8%, tuleb struktuuri habras faas tsementiit, mille tõmbetugevus on väike. Sellest tulenevalt tasakaaluolekus (me ei räägi termotöödeldud terasest) üle 0,8% C ehk üleeutektoidsete teraste tugevusomadused hakkavad vähenema. Rm ­ tugevuspiir Rp0,2 tinglik voolavuspiir;

Tehnomaterjalid
55 allalaadimist
thumbnail
44
docx

Tehnomaterjalide stenogramm

..-150 °C. T50 - temperatuur, mille puhul purunemispildis on vähemalt 50% kiulist pinda. T90 - temperatuur, mille puhul vähemalt 90% purunemispinnast on kiulise struktuuriga. Kõvadusnäitajad Kõvadus on materjali võime vastu panna kohalikule plastsele deformatsioonile, kui tema pinda tungib suurema kõvadusega keha. Materjalide põhilised kõvadusarvu määramise meetodid:  Brinell – surutakse uuritava materjali pinda kõvasulamkuul. Brinelli kõvadus määratakse kuulile toimiva jõu ja tekkiva sfäärilise jälje pindala suhtena. Kõvaduse väärtusele järgneb tähis HBW, selle järel aga katsetingimused (kuuli läbimõõt, koormus ja koormamise kestus).  Rockwell - määratakse materjali kõvadus otsaku (kõvasulam/teraskuuli või teemantkoonuse, mille tipunurk on 120°), materjali sissesurumise teel. Katsetamisel surutakse otsak materjalisse eeljõuga ja fikseeritakse asend

tehnomaterjalid
37 allalaadimist
thumbnail
12
doc

Materjaliõpetus eksami vastused, spikker

kõrglegeerituse tunnus, siis malmi süsiniku sisaldus sajandikprotsentides ja selle järel legeerelemendid ning nende sisaldus täisprotsentides kahenemise järjekorras: DIN1695 G-X 330 NiCr 4 2 (C sisaldus 3,3%) .Malmide kasutamise eelised ja puudused: Negatiivne: väike tugevus (grafiit on terade vahel), ei ole plaste, ei pea vastu lõõkkoormusele; Positiivne: hea valumaterjal (sulamistemp madalam, lihtne ja odavam asju valmistada), hõõrdetegur väiksem kui terasel (kulub vähem), väsimustugevus on parem, malmist võlli tugevus väheneb täpselt sama palju kui ristlõige 3. Teras, selle tootmine, saadav kvaliteet Teras on raua sulam mis sisaldab süsinikku piirides 0,05…2,14%. Kui C sisaldus <0,05, siis tegemist puhta (tehnilise) rauaga, mida kas.elektrotehnikas, seda tuntakse armkorauana (ARMCO – American Rolling Mill Company)

Materjaliõpetus
100 allalaadimist
thumbnail
32
doc

Metallurgia-kõrgahju tehnoloogia

tina jne. 2. Hüdro metallurgia põhineb maakide töötlemisel niisuguste kemikaalide lahustega (hapete, leeliste), mis maagis oleva metalliga reageerides viivad selle ioonidena lahusesse. Lahuse järgneval töötlemisel eraldatakse metall sellest lihtainena. 3. Vanimaks ja kõige levinumaks metallurgiaharuks on püro metallurgia (püro tähendab ladina keeles leeki). Siin sulatatakse metall maagist välja kõrge temperatuuriga. See kõrge temperatuuriga leek saadakse kütuste põletamisel. Nii toodetakse rauda ja tema sulameid, vaske jne. Nagu me eelnevast teame, esineb raud rauamaakides oksiidina. Sellest tuleb raud välja redutseerida. Selleks kasutatakse enamasti koksi - seega sütt või süsinikoksiidi: Fe3O4+ 4C = 3Fe + 4CO

Tehnoloogia
9 allalaadimist
thumbnail
14
doc

Metallurgia-kõrgahju tehnoloogia

Rikastamist tehakse põhiliselt kahel meetodil: veejoaga ja elektromagnetiga. Elektromagneti abil saab rikastada magnetiiti (Fe3O4 ). Maak, mis on paigutatud konveierlindile, liigub üle elektromagnetiga varustatud otsatrumli. Seega mittemagnetilised aheraineosakesed kukuvad konveierilindilt enne ära ja magnetilised rauamaagiosakesed püsivad kauem konveierilindil ning kukuvad ära alles pärast elektromagneti mõju lõppu. Veejoaga uhutakse aga maagist liiva ja savi osakesed. Pärast seda on vaja maaki kuivatada. Maagi peenike fraktsioon (alla 6 mm) ja tolm briketeeritakse enne kõrgahjus kasutamist. Õhk, mis suunatakse kõrgahju, kuumutatakse eelnevalt ca 800ºC. Kõrgahjus on kõige kõrgem temperatuur puhurite lähedal (kuni 2000ºC) Seal põleb koks põlemisõhu hapniku toimel C + O 2 CO 2 , mille juures eraldub rohkesti soojust

171 allalaadimist
thumbnail
20
docx

Materjaliõpetuse eksami kordamisküsimuste vastused.

1.Metallide ja sulamite struktuur ning omadused: - metallide struktuur: Metallide kristalliline struktuur Aatomkristallilise või lihtsalt kristallilise struktuuri all mõeldakse aatomite (ioonide) omavahelist paigutust reaalselt esinevas kristallis. Metallis paiknevad aatomid kindla seaduspärasuse kohaselt, moodustades korrapärase kristallivõre. Selline aatomite paigutus vastab aatomite omavahelise mõju minimaalsele energiale (aatomite ideaalsele paigutusele). - kristallvõre tüübid, Erinevatest võreelementidest ja paigutuse motiividest lähtudes võivad aatomid paigutuda regulaarselt teatud korra kohaselt, mille tulemusena tekib kristalliline struktuur. On ka võimalik, et tavaline aatomite või aatomite rühmade korduvus kristallis on piiratud. Kristallivõre elemendid (võreelemendid) võivad olla a) primitiivsed e. lihtsad (primitive, simple) ­ aatomid paiknevad ainult võreelemendi sõlmpunktides (tippudes);

Materjaliõpetus
194 allalaadimist
thumbnail
5
docx

Metallide Tehnoloogia II Eksami Spikker

Elektrometallurgia; 7. Lahutustasand; 8. Alumine- ja ülemine 4. Pulbermetallurgia vormipool 2) Kõrgahi 3) Koorikvalu Täidise moodustavad rauamaak, koks ja räbusti. Koorikvorm ­ 8...12 mm paksuse seinaga vorm, 1. Täidisseade 2. Suue 3. Kaevus 4. Mõhk mis valmistatakse kuumutatud metallmudeli abil. 5. Turi 6. Kolle 7. Malm 8. Räbu Vormimaterjalid: liiv, polümeervaik (6...7%). Kõrgahjuprotsessid: Tehnoloogia: 1. A. Kütusepõlemine (1800- 2000) 1. mudelplaadi kuumutamine 200...250 °C - 2. Rauaredutseerimine (1000- 1400) otsene punkrile kinnitamine, redutseerimine 2. mudelplaadi katmine, 3. Raua rikastumine süsinikuga (400- 1000) 3. kooriku saamine,

Metalliõpetus
58 allalaadimist
thumbnail
36
docx

Metallide valutehnoloogia - Kursuse materjal

halvendab voolavust) 3. Valamistingimustest (rõhk suurendab voolavust) VALUKAHANEMINE 2 Valukahanemist iseloomustatakse suhtelise mahukahanemise ja suhtelise joonkahanemise arvutustega. (V 1−V 2) εm ∗100 V2 (l 1−l2 ) εj ∗100 l2 seal juures ε m ≃3∗ε j Joonkahanemine:  Hallmalmil 0,0-1,3%,  Terasel 2-2,4%,  Alumiiniumsulamitel 0,9-1,5%,  Vasesulamitel 1,4-2,3% Kahanemine põhjustab:  Kahanemistühikuid (valandi viimasena tardunud osa) Kahanemisttühik on iseloomulik kitsa kristaliseerumis temperatuuride vahemikuga sulamitel. Selle vältimiseks doseeritakse pidevalt vedelmetalli viimasena tarduva osa juurde.  Poore (tekib viimasena tardunud osas, pärast kristallide kokku kasvamist) Kahanemispoorid on iseloomulikud laia kristaliseerumis

Metalliõpetus
58 allalaadimist
thumbnail
12
doc

Metallide tihetusestt ja mu selline jutt

Materjali õpetus Malm Malmideks nimetatakse terastega võrreldes suurema süsinikusisaldusega (üle 2,14%) rauasüsinikusulameid. Malmid liigitatakse süsiniku oleku järgi kahte gruppi: 1) malmid, kus kogu süsinik on seotud olekus tsementiidis (Fe3C). Need on seotud süsinikuga malmid e. valgemalmid; 2) malmid, kus kogu süsinik või suurem osa sellest on vabas olekus grafiidina. Need malmid on tuntud grafiitmalmidena (tuntumad neist on hallmalmid). Suure süsinikusisalduse tõttu on malmi struktuuris kõva ja habras eutektikum ­ ledeburiit (valgemalmis) või süsinik grafiidina (libleja, keraja või pesajana). Nii ledeburiit kui ka grafiit teevad malmi hapraks, mistõttu ei saa ühtki malmiliiki survetöödelda ­ sepistada, valtsida jne. Seepärast kasutatakse malmi valusulamina.

36 allalaadimist
thumbnail
22
doc

Tehnomaterjalid eksam

Eksamiküsimused aines „Tehnomaterjalid“ 1. Millised on materjalide füüsikalised omadused?  Tihedus  Sulamistemperatuur  Soojuspaisumine  Soojusjuhtivus  Elektrijuhtivus  Magnetilisus 2. Millised on materjalide mehaanilised omadused?  Tugevus  Kõvadus  Sitkus  Plastsus 3. Millised on materjalide tehnoloogilised omadused?  Valatavus  Survetöödeldavus  Sepistatavus  Termotöödeldavus  Keevitatavus  Joodetavus 4. Millised on materjalide talitlusomadused?  Korrosioonikindlus  Kulumiskindlus  Pinnaomadused  Tulekindlus  Soojuspüsivus  Ohutus  Keskkonnasõbralikkus 5. Millised on materjalide mehaaniliste omaduste määramise meetodid?  Tõmbeteim

tehnomaterjalid
119 allalaadimist
thumbnail
12
docx

Tehnikas kasutatavad materjalid

kokku, arvutatakse proovikeha suhteline lühenemine ristlõike pindala suurenemise alusel. Dünaamilisel koormamisel (muutub jõud suure kiirusega, peamiseks katsetamise mooduseks on löökpaindeteim) määratavad omadused: löökpaindeteim-Selle järgi hinnatakse, kas materjalil on kalduvus haprale purunemisele.Löökpaindeteim seisneb sisselõikega teimiku purustamises pendellöökmikuga ja purustustöö määramises.(Määratakse löögisitkus KC-J/CM2 või Sitkus- KU või KV ühikuks J (K-Sitkus, U või V Näitab lõike kuju)) Tsüklilisel koormamisel määratavad omadused: väsimusteim- Väsimustugevust iseloomustab väsimuspiir δR, mis on suurim pinge, mida metall purunemata talub koormustsüklit N korda. Käsutatakse seadmeid, mis võimaldavad määrata proovikehade Väsimustugevust painde- , väände-või tõmbe-survekoormusega, samuti kõrgetel ja madalatel temperatuuridel või korrosioonitingimustes

Tehnomaterjalid
21 allalaadimist
thumbnail
52
pdf

Metallide Tehnoloogia 1 Referaat

..................... 26 2 1. Metallide kristalliline struktuur Aatomkristallilise või lihtsalt kristallilise struktuuri all mõeldakse aatomite (ioonide) omavahelist paigutust reaalselt esinevas kristallis. Metallis paiknevad aatomid kindla seaduspärasuse järgi, moodustades korrapärase kristallivõre. Selline aatomite paigutus vastab aatomite omavahelise mõju minimaalsele energiale. Joonis 1. Aatomi ehitus 2. Kristallvõre tüübid Lihtne Ruumkesendatud Tahkkesendatud Põhitahkkesendatud Joonis 2. Lihtne, ruumkesendatud ja tahkkesendatud struktuurid 3 Joonis 3. Põhitahkkesendatud struktuur Mõnedel metallidel on sõltuvalt temperatuurist enam kui üks kristallivõre tüüp. Seda erinevate kristallivõrede esinemist ühe metalli korral nimetatakse polümorfismiks. Tuntumaks näiteks võib tuua raua ja titaani. Raua kristallivõre muutub temperatuuril

Metalliõpetus
46 allalaadimist
thumbnail
14
doc

KAT31_Termotöötluse materjal ja kuesimused

Noolutus ja vanandamine on erinevalt lõõmutusest või karastusest sekundaarse iseloomuga termiline operatsioon, mida tehakse ainult peale karastamist, ilma selleta nendel ei ole mõtet. Karastatud metall on termodünaamiliselt ebastabiilne, tema siseenergia võrreldes lõõmutatud olekuga on suurem. Isegi toatemperatuuril temas aeglaselt tekivad protsessid, mis lähenevad metalli struktuur ja omadused tasakaluoleku seisundiks. Näiteks karastatud terase kõvadus väheneb kauaaegsel hoidmisel toatemperatuuril, seda enam need protsessid aktiviseeruvad metalli kuumutamisel. Just sellist karastatud metalli kuumutamist alla faasimuutuse temperatuuri nimetatakse noolutamiseks.Ei ole printsipiaalset vahet noolutuse ja vanandamise vahel, kuid siiski noolutuseks tavaliselt nimetatakse karastatud terase kuumutamine, vanandamiseks aga sama protsessi värvmetallsulami või malmvalandi puhul. Viimasel (malmvalandi) juhul vanandamine on sama, mis I-liigi lõõmutus.

Tehnomaterjalid
161 allalaadimist
thumbnail
68
docx

Keemia ja materjaliõpetuse eksam 2014/2015 õppeaastal

 Maagi osakeste pind kaetakse õli vm. ainega, seejärel puhutakse õhku läbi maagi, õli ja vee suspensiooni.  Moodustuvad mullid ja need põhjustavad maagi osakeste tõusmise segu pinnale. Maagi kontsentraat tekib seega segu  pinnale ja eraldatakse.   90. Malmid(Fe ja C sulam 2 - 6,7%): liigitus, omadused.  Süsiniku modifikatsiooni järgi sulamistruktuuris eristatakse järgmisi malmi liike:  valgemalm - kogu süsinik on Fe-ga seotud tsementiidina (Fe3C) (suure kõvadusega, habras ning halvasti lõiketöödeldav), kasut. toormalmina.

Keemia ja materjaliõpetus
147 allalaadimist
thumbnail
52
odt

Materjaliõpetus

3) ferrosulameid – suure Mn või Si sisaldusega rauasulameid, mida kasutatakse valumalmide ümbersulatamisel koostise reguleerimiseks ning terase taandamiseks. Koostise järgi eristatakse legeerimata malme, mis on põhiliselt raudsüsiniksulamid ja eriomadustega legeermalme, mille koostisse on lisatud täiendavalt teisi elemente. Malmis sisalduva süsiniku oleku järgi eristatakse: 1. Valgemalmid, kus kogu süsinik on rauaga seotud olekus tsementiidi ( F e 3 C ) kujul. Selline malm on heleda murdepinnaga, millest ka nimi. Valgemalm saadakse vedela malmi kiiremal jahtumisel valuvormis (õhukeseseinalised valandid, metallvormid) 2. Hallid malmid on tumedama murdepinnaga, kus kogu süsinik või enamik sellest on vabas olekus grafiidina. 1.1 Hallid malmid Hallid malmid markeeritakse liigi ja põhiliselt tõmbetugevuse järgi

Materjaliõpetus
37 allalaadimist
thumbnail
24
docx

Materjaliteaduse üldalused eksamiküsimused

Eksamiküsimused 2015 KYP0040 Materjaliteaduse üldalused 1. Polükristalsed, monokristalsed ja amorfsed materjalid (2.4) 1) Valdav osa tahkeid aineid on polükristalse ehitusega, nad koosnevad suurest hulgast väikestest korrapäratult orienteeritud kristallidest. Tekib, kui kristallide kasv algab korraga paljudes kohtades (tavaliselt lisandid, kolloidosakesed jne). Üksikute terade pinnal muutub kristallvõre orientatsioon. Kui kristallisatsioon algab vormi pinnalt, on orientatsioon veidi erinev. 2) Monokristall on tahke keha, kus aatomite korrapärane paiknemine jätkub kogu keha ulatuses, st on üksainus suur kristall. Looduslikud monokristallid (näiteks mäekristall) on tavaliselt korrapärase hulktahuka kujulised. Tehnilistel eesmärkidel kasvatatakse monokristalle kunstlikult. Monokristalli on ka oma kindel tõmbamise skeem sulandist. Nii saadakse näiteks

Materjaliteaduse üldalused
17 allalaadimist
thumbnail
7
docx

Tehnomaterjalid II KT

lisandub neile austeniit. Ferriit (F) (ferrite)- süsiniku tardlahus a-rauas, mis moodustub süsiniku aatomite paigutumisel -raua ruumkesendatud kuupvõre tühikutesse (eelkõige tahkudel olevatesse). Temperatuuril 727 °C lahustub a-rauas kuni 0,02% C (massi%), toatemperatuuril aga kuni 0,01%. Temperatuuridel 0...911 °C esineb -ferriit, 1392...1539 °C-ferriit. Ferriiti iseloomustab: ruumkesendatud kuupvõre (K8), väike tugevus ja kõvadus, suur plastsus. - ferriidi puhul on süsiniku lahustuvus -rauas väga väike: temperatuuril 727 C 0,02%, toatemperatuuril 0,01%. Ferriit on sitke ja hästi deformeeritav nii külmalt kui kuumalt, tema kõvadus toatemperatuuril on 60...90 HB. Kuni 768 °C-ni on ferriit ferromagnetiline. - ferriidi puhul on maksimaalne süsiniku lahustuvus 0,1%. Ta ei esine süsinikterase struktuuris sellistel temperatuuridel, millel terast termotöödeldakse või kasutatakse, seetõttu pakub tema olemasolu vähe huvi.

Tehnomaterjalid
135 allalaadimist
thumbnail
69
pdf

Kermised ehk kõvasulamid

2. 7. Kermiste paagutamine 26 2.8. Omaduste kontroll 39 2.9 Täiendav töötlemine 39 2.9.1 Lihvimine 39 2.9.2 Poleerimine 40 2.9.3 Pindamine 40 2.9.4. Termiline töötlemine 41 2.8.4.Isostaatiline kuumpresimine 42 3. Kermiste omadused 43 3.1. Kõvadus 48 3.2 Paindetugevus 52 3.3 Purunemissitkus 59 3.4 Erosioonikindlus 60 3.5. Abrasiivkulumine 61 3.6 Hõõrdekulumine 63 4. Kermiste kasutamine 66 4.1. WC-Co kermised 66 4.2.TiC- baasil kermised 66 4.3

Materjaliõpetus
84 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun