GRAAFIKUD Joonis 1. Resti takistuse sõltuvus õhu kiirusest Joonis 2. Materjali takistuse sõltuvus õhu kiirusest Joonis 3. Keevkihi kõrguse sõltuvus õhu kiirusest. Joonis 4. Kihi poorsuse sõltuvus õhu kiirusest ARVUTUSED de=0,00135m k=1,1839 (õhu tihedus 25°C juures) =161g/250ml=0,644g/cm3=644g/dm3 g=9,81 k=1,8616*10-5 (õhu dünaamiline viskoossus 25°C juures) KOKKUVÕTE Tutvusime keevkihi seadme ehituse ning tööpõhimõttega. Määrasime katseliselt õhu kriitilise kiiruse 0,2373 m/s, sellel kiirusel alustas tahke materjali kiht keemist ja sellest suurema kiiruse juures osakesed alustasid hõljumist. Seejärel määrasime kaasakande kiiruseks 3,8966 m/s, selle kiiruse juures osakesed hõljusid ning osad neist kanti õhuvoolu mõjul kaasa. Toimus pneumotransport. Kirjanduses antud valemitega arvutatud ja katseandmete
TALLINNA TEHNIKAÜLIKOOL Keemiatehnika instituut Laboratoorne töö õppeaines Keemiatehnika alused HÜDRODÜNAAMIKA ALUSED Tallinn 2011 1. VEDELIKE VOOLAMINE TORUSTIKES 1.2. TÖÖ EESMÄRK Käesoleva töö eesmärgiks on 1. tutvuda katseseadme konstruktsiooniga ja torustiku elementide erinevate ühendamise viisidega; 2. hõõrdekoefitsiendi ja kohttakistuskoefitsientide i väärtuste eksperimentaalne määramine erinevatel vedeliku voolamise kiirustel; 3. torustiku ekvivalentkareduse orienteeruv hindamine; 4. saadud tulemuste võrdlemine kirjandusandmetega. 1.3. KATSESEADME KIRJELDUS Katseseade torustiku hüdraulilise takistuse määramiseks koosneb 3 osast: 1. toitesüsteem, 2. katsetorustikud, 3. mõõtesüsteem. 1.3.1. Toitesüsteem
Tallinna Tehnikaülikool Keemiatehnika instituut Laboratoorne töö õppeaines Gaaside ja vedelike voolamine KEEVKIHI HÜDRODÜNAAMIKA Õpilased: Õppejõud: Õpperühm: Sooritatud: Esitatud: Tallinn 2013 1. Sissejuhatus Selleks, et viia peeneteraline materjal hõljuvasse olekusse ehk keevakihti, on vaja selle materjali kihist läbi juhtida gaasi või vedelikku (fluidumi) kiirusega, mille puhul kihi takistus õhu voole on võrdne kihi kaaluga pinnaühiku kohta. Fluidumi kiirust, mille juures materjali kiht läheb hõljuvasse olekusse, nimetatakse kriitiliseks kiiruseks. Kriitilisel kiirusel suureneb kihi maht, peeneteralised osakesed omandavad võime üksteise suhtes liikuda ning hakkavad
Tallinna Tehnikaülikool Keemiatehnika instituut Laboratoorne töö õppeaines Gaaside ja vedelike voolamine HÜDRODÜNAAMIKA ALUSED Õpilane: Õppejõud: Jelena Veressinina Õpperühm: KAKB-41 Sooritatud: 11.02.2013 Esitatud: Tallinn 2013 Teooria 1. Vedelike voolamine torustikes Torustikus vedeliku või gaasi liikumapanevaks jõuks on rõhkude vahe, mida on võimalik tekitada pumbaga, kompressoriga või vedeliku nivoo tõstmisega. Teades hüdrodünaamiks põhiseadusi on võimalik leida rõhkude vahe, mis on vajalik selleks, et teatud kogus vedelikku või gaasi panna liikuma etteantud kiirusega ning järelikult ka vedeliku voolamiseks vajaminevat energiakulu
Tallinna Tehnikaülikool Keemiatehnika instituut Laboratoorne töö õppeaines Gaaside ja vedelike voolamine HÜDRODÜNAAMIKA ALUSED Õpilane: Õppejõud: Jelena Veressinina Õpperühm: KAKB Sooritatud: 15.05.2015 Esitatud: Tallinn 2015 Teooria 1. Vedelike voolamine torustikes Torustikus vedeliku või gaasi liikumapanevaks jõuks on rõhkude vahe, mida on võimalik tekitada pumbaga, kompressoriga või vedeliku nivoo tõstmisega. Teades hüdrodünaamiks põhiseadusi on võimalik leida rõhkude vahe, mis on vajalik selleks, et teatud kogus vedelikku või gaasi panna liikuma etteantud kiirusega ning järelikult ka vedeliku voolamiseks vajaminevat energiakulu
TALLINNA TEHNIKAÜLIKOOL Keemiatehnika Instituut KEEVKIHI HÜDRODÜNAAMIKA Laboratoorne töö õppeaines Keemiatehnika Õppejõud: Jelena Veressinina, Keemiatehnika õppetool lektor Tallinn 2014 SISUKORD Töö ülesanne...............................................................................................................................3 Katseseadme skeem....................................................................................................................4 Katseandmed ja arvutused..........................................................................................................5 Kokkuvõte...............................................................
(hüdrodünaamika) seaduspärasusi. Kokkusurumatu fluidium fluidium, mille tihedus ei muutu või muutub vähe mõõdukal temperatuuril ja rõhu muutumisel Kokkusurutav fluidium fluidium, mille tihedus muutub oluliselt rõhu ja temperatuuri muutmisel Fluidiumi põhiomadused: Tihedus antud temperatuuril ja rõhul on fluidiumil kindel tihedus Viskoossus fluidiumi omadus takistada osakeste liikumist üksteise suhtes µ Kinemaatiline viskoossus - = ühik 1m2/s du Newtoni viskoossuse seadus - F = -µA , kus µ on proportsionaalsustegur mida dy nimetatakse vedelike dünaamiliseks viskoossuseks. Ühik 1Pa*s Njuutonvedelikud homogeensed gaasid ja vedelikud, mis alluvad Newtoni sisehõõrdeseadusele
Gaaside ja vedelike voolamine eksam. 1. Mõisted reaalne fluidum- Reaalvedelikud jaotatakse: - tilkvedelikud – moodustavad homogeense võõristeta ja tühikuteta keskkonna (vedelikud), on praktiliselt kokkusurumatud ning väikese ruumpaisumisteguriga, - gaasid ja aurud - on kokkusurutavad, tihedus sõltub temperatuurist ja rõhust. ideaalne fluidum -vedelik, millel on konstantne tihedus ja nulliline viskoossus. See tähendab, et ideaalvedelikul on lõpmatult suur voolavus, ta liikumine on hõõrdevaba (puudub viskoossus); ta ei ole rõhu mõjul kokkusurutav ning ta tihedus ei muutu temperatuuri muutudes. perioodiline protsess- protsess,mis toimub tsüklitena (seeriatena) s.t
Kõik kommentaarid