Kippi aparaadi tööpõhimõte. Reaktsioonivõrrand CO2 saamiseks Kippi aparaadis. Kippi aparaat koosneb kolmeosalisest klaasnõust (vt joonis 3.1). CO2 saamiseks pannakse keskmisse nõusse (2) paekivitükikesi. Soolhape valatakse ülemisse nõusse (1), millest see voolab läbi toru alumisse nõusse (3) ja edasi läbi kitsenduse (4), mis takistab lubjakivitükkide sattumist alumisse nõusse, keskmisse nõusse (2). Puutudes kokku lubjakiviga algab CO2 eraldumine vastavalt reaktsioonile. Milliseid gaase on võimalik saada Kippi aparaadi abil? CO2
Kordamisküsimused Mõisted 1. Mool aine hulk, mis sisaldab 6,02 10 23 ühe ja sama aine ühesugust osakest. 2. Molaarmass on ühe mooli aine mass grammides, dimensiooniks on g/mol. 3. Avogardo seadus Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule. 4. Daltoni seadus Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. 5. Gaasi suhteline tihedus on ühe gaasi massi suhe teise gaasi massi samadel tingimustel. Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. 6. Gaasi absoluutne tihedus ühe kuupdetsimeetsi gaasi mass normaaltingimustel. 7. Ideaalgaaside seadused Boyle´i seadus Konstantsel temperatuuril on kindla koguse gaasi maht (V)
Kordamisküsimused Mõisted 1. Mool aine hulk, mis sisaldab 6,02 10 23 ühe ja sama aine ühesugust osakest. 2. Molaarmass on ühe mooli aine mass grammides, dimensiooniks on g/mol. 3. Avogardo seadus Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule. 4. Daltoni seadus Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. 5. Gaasi suhteline tihedus on ühe gaasi massi suhe teise gaasi massi samadel tingimustel. Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. 6. Gaasi absoluutne tihedus ühe kuupdetsimeetsi gaasi mass normaaltingimustel. 7. Ideaalgaaside seadused Boyle´i seadus Konstantsel temperatuuril on kindla koguse gaasi maht (V)
Mõisted Mool – ainehulk, mis sisaldab 6,02 x 1023 ühesugust osakest (molekuli, aatomit, iooni, elektroni vm) Molaarmass – ühe mooli aine molekulide mass grammides Avogadro seadus – kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule. Daltoni seadus – keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Gaasi suhteline ja absoluutne tihedus Suhteline tihedus - ühe gaasi massi suhe teise gaasi massi samadel tingimustel (V,P,T). Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. Ideaalgaaside seadused Boyle’i – Mariotte’i seadus – konstantsel temperatuuril on kindla kogus egaasi maht (V) pöördvõrdelises sõltuvuses rõhuga (P). PV=const
Mõõtelahuse lisamist uuritavale lahusele 17. Selgitage stöhhiomeetriapunkti mõistet tiitrimise juures! Kuidas te määrasite stöhhiomeetriapunkti aluse ja happe tiitrimisel? Ehk ekvivalentpunkt on lahuse seisund, kus lahuses ei ole enam analüüsitavat ainet ja ei ole veel mõõtelahuses olevat reageerivat ainet. Stöhhiomeetriapunkti määrasime indikaatorainetega, mis reageerivad ekvivalentseisundile kas lahuse värvuse muutumisega või sademe moodustumise või kadumisega. 18. Kirjutage reaktsioonivõrrand, mis toimub naatriumhüdroksiidi tiitrimisel soolhappega. HCl + NaOH = NaCl + H20 19. Milline töövahend on bürett? Kuidas ja milleks te seda kasutasite? Millise täpsusega tuleb võtta lugem büretilt? Bürett on peenike mõõteskaalaga klaastoru, mille ühes otsas on klaaspalliga kummitoru, mille abil saab büretist vedelikku tilkhaaval välja lasta. Kasutatakse tiitrimiseks. Kasutasime seda ekvivalentseisundi määramiseks (ehk määrasime võimalikult
3. Selgitage stöhhiomeetriapunkti mõistet tiitrimise juures! Kuidas te määrasite stöhhiomeetriapunkti aluse ja happe tiitrimisel? Stöhhiomeetriapunkt e. ekvivalentpunkt on süsteemi (lahus keeduklaasis või koonilises kolvis) seisund, kus lahuses ei ole enam analüüsitavat ainet ja ei ole veel mõõtelahuses olevat reageerivat ainet. 4. Kirjutage reaksioonivõrrand, mis toimub naatriumhüdroksiidi tiitrimisel soolhappega. HCl + NaOH → NaCl + H2O 5. Milline töövahend on bürett? Kuidas ja milleks te seda kasutasite? Millise täpsusega tuleb võtta lugem büretilt? Bürett on peenike mõõteskaalaga klaastoru, mille ühes otas on klaaspalliga kummitoru, mis võimaldab büretist vedelikku tilkhaaval välja lasta. Katsetes kasutakse büretti, et määrata võimalikult täpselt, millal on büretist välja lastava aine hulk lahuses selline, mis muudab indikaatorite värvi. Lugem võetakse büretilt 0,05 cm 3 täpsusega. 6
ekvivalentpunkt on süsteemi (lahus keeduklaasis või koonilises kolvis) seisund, kus lahuses ei ole enam analüüsitavat ainet ja ei ole veel mõõtelahuses olevat reageerivat ainet. Määrasime selle järgi, et lisasime lahusesse indikaatorit ja kui ainet peale tilgutasime siis muutus värv mingi aeg järsku värv ja jäi püsima. Määrasime ühe tilga täpsusega. 4. Kirjutage reaksioonivõrrand, mis toimub naatriumhüdroksiidi tiitrimisel soolhappega. HCl + NaOH NaCl + H2O 5. Milline töövahend on bürett? Kuidas ja milleks te seda kasutasite? Millise täpsusega tuleb võtta lugem büretilt? Bürett on peenike mõõteskaalaga klaastoru, mille ühes otas on klaaspalliga kummitoru, mis võimaldab büretist vedelikku tilkhaaval välja lasta. Katsetes kasutakse büretti, et määrata võimalikult täpselt, millal on büretist välja lastava aine hulk lahuses selline, mis muudab indikaatorite värvi. Lugem võetakse büretilt 0,05 cm 3 täpsusega. 6. Milline töövahend on pipett
3. Selgitage stöhhiomeetriapunkti mõistet tiitrimise juures! Kuidas te määrasite stöhhiomeetriapunkti aluse ja happe tiitrimisel? Stöhhiomeetriapunkt e. ekvivalentpunkt on süsteemi (lahus keeduklaasis või koonilises kolvis) seisund, kus lahuses ei ole enam analüüsitavat ainet ja ei ole veel mõõtelahuses olevat reageerivat ainet. 4. Kirjutage reaksioonivõrrand, mis toimub naatriumhüdroksiidi tiitrimisel soolhappega. HCl + NaOH NaCl + H2O 5. Milline töövahend on bürett? Kuidas ja milleks te seda kasutasite? Millise täpsusega tuleb võtta lugem büretilt? Bürett on peenike mõõteskaalaga klaastoru, mille ühes otas on klaaspalliga kummitoru, mis võimaldab büretist vedelikku tilkhaaval välja lasta. Katsetes kasutakse büretti, et määrata võimalikult täpselt, millal on büretist välja lastava aine hulk lahuses selline, mis muudab indikaatorite värvi. Lugem võetakse büretilt 0,05 cm 3 täpsusega. 6
3. Selgitage stöhhiomeetriapunkti mõistet tiitrimise juures! Kuidas te määrasite stöhhiomeetriapunkti aluse ja happe tiitrimisel? Stöhhiomeetriapunkt e. ekvivalentpunkt on süsteemi (lahus keeduklaasis või koonilises kolvis) seisund, kus lahuses ei ole enam analüüsitavat ainet ja ei ole veel mõõtelahuses olevat reageerivat ainet. 4. Kirjutage reaksioonivõrrand, mis toimub naatriumhüdroksiidi tiitrimisel soolhappega. HCl + NaOH NaCl + H2O 5. Milline töövahend on bürett? Kuidas ja milleks te seda kasutasite? Millise täpsusega tuleb võtta lugem büretilt? Bürett on peenike mõõteskaalaga klaastoru, mille ühes otas on klaaspalliga kummitoru, mis võimaldab büretist vedelikku tilkhaaval välja lasta. Katsetes kasutakse büretti, et määrata võimalikult täpselt, millal on büretist välja lastava aine hulk lahuses selline, mis muudab indikaatorite värvi. Lugem võetakse büretilt 0,05 cm 3 täpsusega. 6
𝐶% = ∗ 100% 1000 ∗ 𝜌𝑙𝑎ℎ𝑢𝑠 10. Kuidas arvutatakse protsendilisus ümber molaarseks kontsentratsiooniks? 1000 ∗ 𝜌𝑙𝑎ℎ𝑢𝑠 ∗ 𝐶% 𝐶𝑀 = ∗ 100% 1 ∗ 𝑀𝑎𝑖𝑛𝑒 11. Milliste lahuste (gaasilised, vedelad või tahked) korral saab kasutada komponentide sisalduse suuruse väljendamiseks molaarsust? Molaarsust saab väljendada kõikide lahuste puhul. Vedelik, gaas. Vedelik: NaCl lahus Gaas: CO2 12. Kuidas te määrasite katseliselt NaCl-i sisaldust liiva-soola segus? Keedusoola protsendilise sisalduse leidmiseks lahustatakse kaalutud segu vees ja filtreeritakse. Filtraadi tiheduse kaudu leitakse tabelist NaCl protsendiline sisaldus. Lahustasin liiva-soola segu 3 korda destilleeritud vees ning filtreerisin seda peale igat lahustamist. Mõõtsin areomeetriga filtreeritud soolalahuse tiheduse ning arvutasin vastavalt tabelile soola
saab loendada ja mida on arvuliselt tohutult palju. 2. Molaarmass - on ühe mooli aine mass grammides, dimensiooniks on g/mol. 3. Avogadro seadus - Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korral aatomeid). 4. Daltoni seadus - Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. 5. Gaasi suhteline ja absoluutne tihedus: a. Suhteline tihedus - on ühe gaasi massi suhe teise gaasi massi samadel tingimustel (V, P, T). Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. b. Absoluutne tihedus - normaaltingimustel ehk 1 kuupdetsimeetri gaasi mass normaaltingimustel
I.Ideaalgaaside seadused Mool on ainehulk, mis sisaldab 6,02·1023 ühesugust osakest. Molaarmass (M, g/mol) on ühe mooli aine molekulide (aatomite,ühe mooli ioonide) mass grammides. Avogadro seadus. Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korrla aatomeid). Daltoni seadus. Keemileselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga, Osarõhk on rõhk, mis avaldaks gaas, kui teise gaase segus pooleks. Püld = p1 + p 2 + ... = p i pi = Püld X i X i -vastava gaasi moolimurd segus Gaasi suhteline tihedus on ühe gaasi massi suhe teise gaasi massi samadel tingimustel (P,V, T) . GST on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem m M D= 1 = 1 m2 M 2 Gaasi absoluutne tihedus normaaltingimustel e 1 dm3 gaasi mass normaaltingimustel M gaas [ g mol ] 0 = dm 3 [
Küsimused: *Kippi aparaadi tööpõhimõte. Reaktsioonivõrrand CO2 saamiseks Kippi aparaadis. Süsinikdioksiidi saamiseks pannaks keskmisse nõusse (aparaat koosneb kolmest klaasnõust) lubjakivitükikesi. HCl valatakse ülemisse nõusse, millest see voolab läbi anuma keskel oleva toru alumisse nõusse ja edasi läbi kitsenduse, mis takistab lubjakivitükkide sattumist alumisse nõusse, keskmisse nõusse, Puutudes kokku lubjakiviga, algab süsinikdioksiidi eraldumine CaCO3 + 2HCl CaCl2 + CO2 + H2O Tekkiv süsinikdioksiid väljub kraani kaudu
Labori töövõtted vastused 1. Süsinikdioksiidi molaarmassi määramine 1. Kippi aparaadi tööpõhimõte. Reaktsioonivõrrand CO2 saamiseks Kippi aparaadis. Kippi aparaat koosneb kolmeosalisest klaasnõust. CO2 saamiseks pannakse keskmisse nõusse (2) paekivitükikesi. Soolhape valatakse ülemisse nõusse (1), millest see voolab läbi toru alumisse nõusse (3) ja edasi läbi kitsenduse (4), mis takistab lubjakivi tükkide sattumist alumisse nõusse, keskmisse nõusse (2). Puutudes kokku lubjakiviga algab CO2 eraldumine vastavalt reaktsioonile. Tekkiv CO2 väljub kraani (5) kaudu. Kui kraan sulgeda, siis CO2 rõhk
Eksperimentaalne töö 1 Süsinikdioksiidi molaarmassi määramine Töö eesmärk: Gaasi CO2 saamine ning tema molaarmassi leidmine. Töövahendid: Kippi aparaat või CO2 balloon, 300 ml korgiga varustatud seisukolb, tehnilised kaalud, 250 ml mõõtesilinder, termomeeter, baromeeter. Klassikaliselt saadakse mitmeid gaase laboratooriumis Kippi aparaati kasutades. Kippi aparaat koosneb kolmest klaasnõust CO2 saamiseks pannakse keskmisse nõusse (2) lubjakivitükikesi. Soolhape valatakse ülemisse nõusse, millest see voolab läbi anuma keskel oleva toru alumisse nõusse ja edasi läbi kitsenduse, mis takistab lubjakivitükkide sattumist alumisse nõusse, keskmisse nõusse. Puutudes kokku lubjakiviga, algab CO2 eraldumine CaCO3 + 2HCl → CaCl2 + CO2 + H2O Tekkiv CO2 väljub kraani kaudu. Kui kraan sulgeda, siis CO2 rõhk keskmises nõus tõuseb ja
temperatuur T [K] on universaalse gaasikonstandi väärtus R = 8,314 J/mol ⋅ K. 0 0 3 P ∙V m 101325 Pa ∙ 0,0224138 m R= 0 = =8,314 J / mol ∙ K T 273,15 K Daltoni seadus. Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Näiteks sisaldab õhk mahuliselt 21% hapnikku ja 79% lämmastikku. Kui üldrõhk on 1,0 atm, pO2 pN2 siis hapniku osarõhk = 0,21 atm ja lämmastiku osarõhk = 0,79 atm. Üldrõhu pO2 ∙ 759 = 157 mmHg.
TTÜ keemiainstituut Anorgaanilise keemia õppetool YKI0020 Keemia alused Laboratoorne Töö pealkiri: töö nr. Õpperühm: Töö teostaja: Õppejõud: Töö teostatud: Protokoll Protokoll esitatud: arvestatud: Sissejuhatus Ideaalgaas– gaas, mille molekulide vahelised kaugused on suured, mistõttu jõud nende vahel on väikesed ja seetõttu sageli jäetakse arvestamata. Gaaside maht sõltub oluliselt temperatuurist ja rõhust. Gaasiliste ainete mahtu väljendatakse tavalaliselt kokkuleppeliselt normaaltingimustel, kus temperatuur on 273,15 K (0 ⁰C) ja rõhk 101 325 Pa (0,987 atm; 750 mm Hg). Kasutatakse ka standardtingimusi, kus temperatuur on 273,15 K ja rõhk 100 000 Pa (0,987 atm; 750 mm Hg). Avogadro seadus
P ja T aga rõhk ja temperatuur, mille juures maht V on antud või mõõdetud. Ühe mooli gaasilise aine korral: PV T = const = R R - universaalne gaasikonstant n mooli gaasi kohta kehtib jargmine seos: P*V = n*R*T m ehk Clapeyroni võrrand - PV = M RT 3. Daltoni seadus Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Näiteks sisaldab õhk mahuliselt 21% hapnikku ja 79% lämmastikku. Kui üldrõhk on 1,0 atm, siis hapniku osarõhk p(O2) = 0,21 atm ja lämmastiku osarõhk p(N2) = 0,79 atm. Üldrõhu 750 mm Hg korral saame aga hapniku osarõhuks p(O2) = 0,21⋅750 = 157,5 mm Hg. Osarõhk sõltub seega nii üldrõhust kui gaasi sisaldusest segus. Püld = p1+p2+... = Σpi pi = Püld * Xi Xi - vastava gaasi moolimurd segus.
normaaltingimustel. R - universaalne gaasikonstant R = 8,314 J/molK Arvutusvalemid gaasi mahu leidmiseks temperatuuril T ja rõhul P, kui on teada gaasi moolide arv või mass. Difusioon on aineosakeste soojusliikumisest tingitud protsess, mis viib kontsentratsioonide ühtlustumisele süsteemis. Gaasi suhteline tihedus on ühe gaasi massi suhe teise gaasi massi samadel tingimustel (V, P, T). Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. Suhtelist tihedust väljendatakse tavaliselt õhu suhtes (õhu keskmine molaarmass, arvestades lämmastiku ja hapniku massivahekorda õhus on 28,96 29,0 g/mol) või vesiniku (MH 2 = 2,0 g/mol) suhtes. Arvutusvalem tundmatu gaasi molaarmassi leidmiseks. Gaasi absoluutne tihedus normaaltingimustel ehk 1 dm3 gaasi mass normaaltingimustel 3.Kasutatud mõõteseadmed, töövahendid ja kemikaalid
kus V0 on gaasi maht normaal- või standardtingimustel, P0 normaal- või standardtingimustele vastav rõhk (sõltuvalt valitud ühikutest), T0 normaal- ja standardtingimustele vastav temperatuur kelvinites (mõlemal juhul 273 K), P ja T aga rõhk ja temperatuur, mille juures maht V on antud või mõõdetud. Daltoni seadus. Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Näiteks sisaldab õhk mahuliselt 21% hapnikku ja 79% lämmastikku. Kui üldrõhk on 1,0 atm, siis hapniku osarõhk = 0,21 atm ja lämmastiku osarõhk = 0,79 atm. Üldrõhu 750 mm Hg korral saame aga hapniku osarõhuks = 0,21750 = 157,5 mm Hg. Osarõhk sõltub seega nii üldrõhust kui gaasi sisaldusest segus. ... vastava gaasi moolimurd segus
kus V° on gaasi maht normaal- või standardtingimustel P° normaal- või standardtingimustele vastav rõhk (sõltuvalt valitud ühikutest), T° normaal- või standardtingimustele vastav temperatuur kelvinites (mõlemal juhul 273 K), P ja T aga rõhk ja temperatuur, mille juures maht V on antud või mõõdetud. Daltoni seadus - keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Moolimurd - segu ühe komponendi moolide arv jagatud kõikide segus olevate komponentide moolide arvu summaga. Gaasilise aine molekulid liiguvad alati suunas, kus gaasi osarõhk on väiksem toimub osarõhu ühtlustumine kogu süsteemis. Seda nähtust nimetatakse difusiooniks. Difusioon on aineosakeste soojusliikumisest tingitud protsess, mis viib kontsentratsioonide ühtlustumisele süsteemis.
Tallinna Tehnikaülikool 2011 Katse 1. Süsinikdioksiidi molaarmassi määramine Töö eesmärk Gaaside saamine laboratooriumis, seosed gaasiliste ainete mahu, temperatuuri ja rõhu vahel, gaasiliste ainete molaarmassi leidmine. Töövahendid Kippi aparaat või CO2 balloon, 300 ml korgiga varustatud seisukolb, tehnilised kaalud, 250 ml mõõtesilinder, termomeeter, baromeeter. Töö käik Kaaluda tehnilistel kaaludel korgiga varustatud ~300 ml kuiv kolb (mass m1). Kolvi kaelale teha viltpliiatsiga märge korgi alumise serva kohale. Juhtida balloonist 7...8 minuti vältel kolbi süsinikdioksiidi. Jälgida, et vooliku ots ulatuks peaaegu kolvi põhjani, aga ei oleks tihedalt vastu põhja. Muidu võib juhtuda, et kogu CO 2 väljub
Clapeyroni võrrand P V= n R T m P V = ── R T M Universaalse gaasikonstandi väärtuse leidmine: P0 Vm0 101 325 Pa * 0,0224138 m3 R = ──── = ───────────────── = 8,314 J/mol * K T0 273,15 K * mol R = 0,082 atm * l * mol-1 * K-1 R = 62 400 mm Hg * cm3 * mol-1* K-1 Daltoni seadus Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Püld = P1 + P2 + ... = ƩPi Pi = Püld * Xi Xi – vastava gaasi moolimurd segus Gaasi suhteline tihedus - ühe gaasi massi/ molaarmassi (m1/ M1) suhe teise gaasi massi/ molaarmassi (m2/ M2) samadel tingimustel (V, P, T). Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. m1 M1 D = ─── = ─── m2 M2
Töö eesmärk Gaasiliste ainete mahu mõõtmine, gaaside segud ja gaasi osarõhk, arvutused gaasidega reaktsioonivõrrandi põhjal. Töövahendid ja ained Töövahendid: Seade gaasi mahu mõõtmiseks, väike mõõtesilinder, filterpaber, termomeeter, baromeeter. Ained: 10%-ne soolhappelahus, 5,0...10,0 mg metallitükk (Mg ) Töö käik Katseseadeldis koosneb kahest kummivoolikuga ühendatud büretist, mis on täidetud veega. Üks bürett on ühendatud katseklaasiga, milles metall reageerib happega. Enne katset eemaldada katseklaas ja puhastada destilleeritud veega. Sättida büretid ühele kõrgusele ning kontrollida, et vee nivoo oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. Vajadusel lisada või eemaldada büretist destilleeritud vett. Ühendada katseklaas tihedalt korgiga. Tõsta üks büretiharu teisest 15...20 cm kõrgemale ning jälgida paar minutit, kas vee nivoo püsib paigal. Kui nivoo ei muutu, on katseseade hermeetiline ja võib alustada katset.
Töö ülesandeks on laboratooriumis gaaside saamine. Samuti õppida tundma seoseid gaasiliste ainete mahu, temperatuuri ning rõhu vahel. Eesmärk on leida gaasilise aine molaarmass, kasutades eelmainitud seoseid gaasiliste ainete omaduste vahel. Sissejuhatus Õhu mahu arvutamiseks (CO2) kolvis normaaltingimusel (V0) kasutatakse valemit: 0 PV T 0 V = 0 PT Gaaside tiheduse valem: g M gaas [ ] 0 mol ρ= 3 dm 22,4 [ ] mol Õhu mass: mõhk = ρ0 õhk ⋅ V0 Suhteline tihedus: m1 D= m2 Katse süstemaatiline viga, kus 44 g/mol on CO2 tegelik molaarmass: g E A =M −44,0 mol Katse suhteline viga: ¿ M CO −44,0∨∙ 100 ES = 2 44,0 Moolide arv: V0 n= Vm Clapeyroni võrrand: m
normaaltingimustele. 0 PV T 0 V = P0 T 1 Gaasi suhteline tihedus on ühe gaasi massi suhe teise gaasi massi samadel tingimustel. Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või kergem. m1 M 1 D= = m2 M 2 Suhtelist tihedust väljendatakse tavaliselt õhu suhtes (õhu keskmine molaarmass, arvestades lämmastiku ja hapniku massivahekorda õhus on 28,96 ≈ 29,0 g/mol). M gaas D õhk =
T n mooli gaasi kohta kehtib seos P∙ V =n∙ R ∙T (Clapeyroni võttand). Järgmiste ühikute korral – rõhk P [Pa]; mass m [g]; moolide arv n [mol]; maht V [m3]; temperatuur T [K] on universaalse gaasikonstandi väärtus R = 8,314 J/mol⋅K. Daltoni seadus: Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Osarõhk sõltub seega nii üldrõhust kui gaasi sisaldusest segus. Moolimurd: segu ühe komponendi moolide arv jagatud kõikide segus olevate komponentide moolide arvu summaga. Difusioon: aineosakeste soojusliikumisest tingitud protsess, mis viib kontsentratsioonide ühtlustumisele süsteemis. Gaasi suhteline tihedus: ühe gaasi massi suhe teise gaasi massi samadel tingimustel (V, P, T)
T n mooli gaasi kohta kehtib seos P V =n R T (Clapeyroni võttand). Järgmiste ühikute korral rõhk P [Pa]; mass m [g]; moolide arv n [mol]; maht V [m3]; temperatuur T [K] on universaalse gaasikonstandi väärtus R = 8,314 J/molK. Daltoni seadus: Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Osarõhk sõltub seega nii üldrõhust kui gaasi sisaldusest segus. Moolimurd: segu ühe komponendi moolide arv jagatud kõikide segus olevate komponentide moolide arvu summaga. Difusioon: aineosakeste soojusliikumisest tingitud protsess, mis viib kontsentratsioonide ühtlustumisele süsteemis. Gaasi suhteline tihedus: ühe gaasi massi suhe teise gaasi massi samadel tingimustel (V, P, T)
1 Pa = 1 kg ⋅ m-1 ⋅ s-2 1 Pa ⋅ m3 = 1 kg ⋅ m2 ⋅ s-2 = 1 J Muude rõhu- ja mahuühikute korral võib R väärtus olla näiteks R = 0,082 atm ⋅ l ⋅ mol-1 ⋅ K-1 R = 62400 mm Hg ⋅ cm3 ⋅ mol-1 ⋅ K-1 3 Daltoni seadus. Keemiliselt inaktiivsete gaaside segu üldrõhk võrdub segu moodustavate gaaside osarõhkude summaga. Osarõhk on rõhk, mida avaldaks gaas, kui teisi gaase segus poleks. Püld = p1 + p2 + ... = Σpi 1.10 Pi = Püld ∙ Xi 1.11 Xi – vastava gaasi moolimurd segus. Moolimurd – segu ühe komponendi moolide arv jagatud kõikide segus olevate komponentide moolide arvu summaga ni Xi n 1.12 Gaasilise aine molekulid liiguvad alati suunas, kus gaasi osarõhk on väiksem – toimub osarõhu ühtlustumine kogu süsteemis
Sättida büretid ühele kõrgusele ning kontrollida, et vee nivoo oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. Tõsta üks büretiharu teisest 15...20 cm kõrgemale ning jälgida paar katset. Viia büretid taas ühele kõrgusele ja eemaldada katseklaas. Katse: Võtta metallitükk paberilt ning mähkida märja filterpaberi sisse (mitte väga tihedalt, sest paber peaks katse käigus avanema). Mõõta väikese mõõtesilindriga 5...6 ml 10%-st soolhappelahust. Valada hape läbi lehtri katseklaasi nii, et katseklaasi ülaosa ei puutuks happega kokku. Hoides katseklaasi happega väikese nurga all, asetada metallitükk filterpaberiga katseklaasi seinale umbes 1 cm allapoole avaust. Sulgeda katseklaas hermeetiliselt nii nagu kontrolli ajal, kuid vältida liigutusi, mis võiksid metallitüki happesse kukutada. Pärast liigutada bürette üles-alla nii, et vee nivood mõlemas büretis oleksid ühes tasapinnas ja
𝑀 𝐽 kus R – universaalne konstant, 𝑅 = 8,314 𝑚𝑜𝑙 ∗𝐾 Kasutatud mõõteseadmed, töövahendid ja kemikaalid Töövahendid: CO2 balloon, 300 ml korgiga varustatud seisukolb, tehnilised kaalud, 250 ml mõõtesilinder, termomeeter, baromeeter. Kemikaalid: CO2 , vesi. 2 Joonis 1 Kippi aparaat 1. Soolhappe nõu; 2. Keskmine nõud lubjakivitükkidele CO2 saamiseks; 3. Alumine nõu; 4. Kitsendus, mis takistab lubjakivitükkide sattumist alumisse nõusse; 5. Kraan, millest väljub tekkib CO 2 ; 6. Absorber puhta CO 2 saamiseks, mille ülesandeks siduda HCl aurud ja niiskus. Kasutatud uurimis- ja analüüsimeetodid ja metoodika Kaalusin tehnilistel kaaludel korgiga ~300 ml kuiva kolvi. Tegin märke kolvile korgi alumise
LABORATOORNE TÖÖ 1 Süsinikdioksiidi molaarmassi määramine Töö ülesanne ja eesmärk Gaaside saamine laboratooriumis, seosed gaasiliste ainete mahu, temperatuuri ja rõhu vahel, gaasiliste ainete molaarmassi leidmine. Sissejuhatus Kasutusel on erinevad ideaalgaaside seadused ja nende abil leitakse süsinikdioksiidi molaarmass. Leida tuleb CO2 tihedus kolvis normaaltingimustel kasutades gaaside absoluutse tiheduse (1 dm3 gaasi mass normaaltingimustel) valemit: M gaas [ g / mol ] ° = g / dm 3 [ 3 22,4 dm / mol ] Leida tuleb gaasi maht normaaltingimustel (normaaltingimused: temperatuur = 273,15K, rõhk = 101325 Pa), (Abiks: Boyle'i seadus. Konstantsel temperatuuril on kindla koguse gaasi maht pöördvõrdelises sõltuvuses rõhuga, Charles'i seadus. Konstantsel temperatuuril on kindla koguse gaasi maht pöördvõrdelises sõltuvuses rõhuga) PVT ° V°= P°T
normaal- või standardtingimustel, P0 normaal- või standardtingimustele vastav rõhk (sõltuvalt valitud ühikutest), T0 normaal- ja standardtingimustele vastav temperatuur kelvinites (mõlemal juhul 273 K), P ja T aga rõhk ja temperatuur, mille juures maht V on antud või mõõdetud. Gaasi suhteline tihedus on ühe gaasi massi suhe teise gaasi massi samadel tingimustel (V, P, T). Gaasi suhteline tihedus on ühikuta suurus ja näitab, mitu korda on antud gaas teisest raskem või m1 M 1 kergem D= = . Suhtelist tihedust väljendatakse tavaliselt õhu suhtes (õhu keskmine m2 M 2 molaarmass on 29,0 g/mol) või vesiniku (vesiniku molaarmass = 2,0 g/mol) suhtes. Näiteks: M D õhk = gaas 29,0 Gaasi absoluutne tihedus normaaltingimustel ehk 1 kuupdetsimeetri gaasi mass normaaltingimustel: M gaas 0 29,0