Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

FUNKTSIOONI PIIRVÄÄRTUS (0)

5 VÄGA HEA
Punktid
Vasakule Paremale
FUNKTSIOONI PIIRVÄÄRTUS #1 FUNKTSIOONI PIIRVÄÄRTUS #2 FUNKTSIOONI PIIRVÄÄRTUS #3 FUNKTSIOONI PIIRVÄÄRTUS #4 FUNKTSIOONI PIIRVÄÄRTUS #5 FUNKTSIOONI PIIRVÄÄRTUS #6 FUNKTSIOONI PIIRVÄÄRTUS #7 FUNKTSIOONI PIIRVÄÄRTUS #8 FUNKTSIOONI PIIRVÄÄRTUS #9 FUNKTSIOONI PIIRVÄÄRTUS #10
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 10 lehte Lehekülgede arv dokumendis
Aeg2012-03-21 Kuupäev, millal dokument üles laeti
Allalaadimisi 104 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Karin90 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
4
pdf

Matemaatiline analüüs 1, teooria, spikker, kontrolltöö 1, matan

Parameetrilisel kujul antud funktsioon Funktsiooni piirväärtuse definitsiooni laienemine juhtudele a = ± ja b = 1.Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda 4.Üksühese funktsiooni ja pöördfunktsiooni definitsioonid. Vaatleme funktsiooni y=f(x). Toome lisaks muutujale x ± absoluutväärtuse Seosed funktsiooni ja tema pöördfunktsiooni ja y sisse ka kolmanda muutuja t. x= (t). Siis saab ka Funktsioonil f on piirväärtus kohal a, kui suvalises piirprotsessis xa, mis omadused. Reaalarvude ja lõpmatuste ümbrused

Algebra ja analüütiline geomeetria
thumbnail
12
odt

Matemaatiline analüüs I 1. kollokvium

Hulka Uε(a) := {x ∈ V|d(a, x) < ε, ε > 0} nimetatakse punkti a ∈ V ε-ümbruseks. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a − ε, a], kus ε > 0. Reaalarvu a parempoolseks ümbruseks nimetatakse suvalist poollõiku [a, a+ε), kus ε > 0. Suuruse lõpmatus ümbruseks nimetatakse suvalist vahemikku (M,∞), kus M > 0. Suuruse miinus lõpmatus ümbruseks nimetatakse suvalist vahemikku (−∞,−M), kus M > 0. 2.Funktsiooni mõiste. Reaalmuutuja ühene funktsioon. Määramispiirkond, muutumispiirkond. Paaris ja paaritud funktsioonid. Perioodilised ja antiperioodilised funktsioonid. Pöördfunktsioonid. Monotoonsed funktsioonid. Kasvavad ja kahanevad funktsioonid. Funktsioon - Kui hulga X igale elemendile x on vastavusse seatud element y hulgast Y, siis öeldakse, et hulgal X on määratud ( ühene) funktsioon f ja seda vastavust tähistatakse y = f(x) (x ∈ X).

Matemaatiline analüüs 1
thumbnail
31
pdf

Piirväärtus loeng 3

a- a a+ x Ehk arv x kuulub arvu a ümbrusesse raadiusega , kui a- funktsiooni käitumist arvu 2 ümbruses: x 1,5 1,9 1,99 1,999 2,001 2,01 2,1 2,5 f(x) 3,5 3,9 3,99 3,999 4,001 4,01 4,1 4,5

Matemaatika
thumbnail
9
pdf

Vähendatud programmi (A) ESIMENE teooriatöö

MATEMAATILINE ANALÜÜS I Suuruse miinus lõpmatus ümbruseks nimetatakse suvalist vahemikku -, - , kus > 0. Arv kuulub miinus lõpmatuse ümbrusesse -, - siis ja ainult siis, kui < - . Reaalarvudest koosnevat hulka nimetatakse tõkestatuks, kui leidub lõplik vahemik , nii, et , . 2) Jääv ja muutuv suurus. Suuruse muutumispiirkond. Funktsiooni definitsioon. Funktsiooni argument, sõltuv muutuja, määramispiirkond ja väärtuste hulk. Funktsiooni esitamine tabelina ja analüütiliselt. Funktsiooni graafiku mõiste. Graafiku omadused. Suurust, mis võib omandada erinevaid arvulisi väärtusi, nimetatakse muutuvaks suuruseks ehk muutujaks. Suurust, mille arvuline väärtus ei muutu, nimetatakse jäävaks suuruseks. Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks.

Matemaatika analüüs i
thumbnail
1
docx

Matemaatiline analüüs I teooria

1. Tõkestatud hulga mõiste. Ülalt/alt tõkestatud hulga mõiste. Tuua näide. 10,12Jada piirväärtus. Arvu a nimetatakse reaalarvude jada x 1, x2, x3, ... Tõkestatud hulga definitsioon ­ Reaalarvudest koosnevat hulka A piirväärtuseks, kui iga kuitahes vaikese positiivse arvu korral saab näidata nimetatakse tõkestatuks, kui leidub lõplik vahemik (a,b) nii, et A(a,b). sellist jada elementi xn , millest alates kõik järgnevad jada elemendid kuuluvad Tõkestamata hulgad on lõpmatud vahemikud

Matemaatiline analüüs
thumbnail
23
doc

Matemaatiline analüüs KT1 vastused

nimetatakse selle suuruse muutumispiirkonnaks. Funktsiooni definitsioon- Olgu antud 2 muutuvat suurust x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Funktsiooni argument- muutuja x, sõltumatu. Sõltuv muutuja- muutuja y. Määramispiirkond- argumendi x muutumispiirkonda. Tähis X. y= f(x). Väärtuste hulk- Hulka Y = {f(x) || x kuulub X} Funktsiooni esitamine tabelina- Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neil vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni esitamine analüütiliselt- Funktsioon esitatakse valemi kujul. Kui vaja, lisatakse ka määramispiirkonna kirjeldus. Näiteks avaldis y = x2 , x kuulub [0, 1] kirjeldab funktsiooni, mille määramispiirkonnaks on lõik [0, 1] ja iga x korral sellelt

Matemaatiline analüüs i
thumbnail
13
doc

Matemaatiline analüüs I 1. kt teooria

Def. Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Def. Olgu antud kaks muutujat x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Kirjutatakse y=f(x). Argumendi x muutumispiirkonda nimetatakse funktsiooni f määramispiirkonnaks. Määramispiirkonna tähisena kasutatakse sümbolit x. Hulka Y={ f(x) || x X } nimetatakse funktsiooni f väärtuste hulgaks. Funktsiooni esitusviis tabeli kujul. Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neile vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni analüütiline esitusviis

Matemaatika analüüs i
thumbnail
13
doc

Matemaatiline analüüs I 1 kt teooria

Def. Muutuva suuruse kõigi võimalike väärtuste hulka nimetatakse selle suuruse muutumispiirkonnaks. Def. Olgu antud kaks muutujat x ja y. Funktsiooniks nimetatakse kujutist, mis seab suuruse x igale väärtusele tema muutumispiirkonnast vastavusse suuruse y ühe kindla väärtuse. Muutujat x nimetatakse seejuures sõltumatuks muutujaks ehk argumendiks ja muutujat y sõltuvaks muutujaks. Kirjutatakse y=f(x). Argumendi x muutumispiirkonda nimetatakse funktsiooni f määramispiirkonnaks. Määramispiirkonna tähisena kasutatakse sümbolit x. Hulka Y={ f(x) || x X } nimetatakse funktsiooni f väärtuste hulgaks. Funktsiooni esitusviis tabeli kujul. Funktsiooni argumendi võimalikud väärtused esitatakse tabeli ühes reas (veerus) ja neile vastavad funktsiooni väärtused tabeli teises reas (veerus). On võimalik vaid siis, kui funktsiooni argumendil on lõplik arv väärtusi. Funktsiooni analüütiline esitusviis

Matemaatiline analüüs 2




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun