Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Tuumaenergia kasutamine - sarnased materjalid

tuumaenergia, reaktor, uraan, tuumaelektrijaam, reaktorit, tuumaelektrijaamad, tuumaelektrijaamade, elektrienergia, reaktorid, tuumkütus, olkiluoto, energeetika, neutron, isotoobi, ignalina, austraalia, kanada, tänapäevased, tuumariigid, seisukohast, elekter, tuumaenergeetika, konkurents, jaapanis, ahelreaktsioon, slovakkia, rajamist
thumbnail
5
docx

Tuumaenergia

Tuumaenergia Koostas: Juhendas : Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat umbes viiekümneks aastaks

Loodus
12 allalaadimist
thumbnail
14
odt

Tuumaenergia kasutamine, füüsika

Referaat Virgo Ernesaks EÜ12 Tuumaenergia kasutamine Jaanuar 2015 Sissejuhatus Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Tuumaenergia on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses.

Füüsika
7 allalaadimist
thumbnail
28
rtf

Tuumaenergeetika uurimistöö

JÕGEVA ÜHISGÜMNAASIUM 11.A klass Siim Kaaver Tuumaenergeetika Uurimustöö Juhendaja: õp. Heli Toit Jõgeva 2010 SISUKORD Sissejuhatus..................................................................................................................... 1. Mis on tuumaenergia?........................................................................................... 2. Kuidas tuumaenergia tekib?.................................................................................. 3. Tuumaenergia kasulikkus...................................................................................... 4. Tuumkütus............................................................................................................. 5. Tuumareaktor........................................................................................................ 6. Levinuimad reaktoritüübid.....

Füüsika
121 allalaadimist
thumbnail
3
docx

Tuumaenergia referaat

Tuumaenergia olemus Tuumafüüsika kui teadusharu sündis koos radioaktiivsuse juhusliku avastamisega prantsuse teadlase Henri Becquereli poolt aastal 1896. Järgnevate aastakümnete jooksul on oma panuse selle teadusharu arengusse andnud mitmed nimekad teadlased. Seda veidi üle sajandi vanust avastust on rakendatud väga erinevates valdkondades tuumaenergia rakendusi on ära kasutatud sõjatööstuses, samas teisalt on praktiliselt võimatu kujutada tänapäevast elu ette ilma selle rakendusteta meditsiinis või energiatootmises. Tuumaenergeetika erineb oluliselt teistest energia saamise viisidest. Tuumaenergiat loetakse säästvaks, sest energia tootmise protsessis ei eraldu CO 2. Samas võib tuumajaamaga kaasneda oht radioaktiivse saaste kandumiseks keskkonda.. Lisaks

Geograafia
36 allalaadimist
thumbnail
5
doc

Tuumaenergia

Tuumaenergia Tuumaenergia on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses. Tänaseks on spetsialistidele piisavalt selge, et tuumaenergia on ainus tõeline elektriallikas inimkonna jaoks, mis ei põhjusta kasvuhooneefekti, happevihmu jm. Fossiilsed kütused annavad praegu üle poole maailma elektritoodangust; hüdroenergia ja tuumaenergia osatähtsus on tunduvalt väiksem. Tuumaenergia üksi ei kindlusta turvalisust ja pidevat elektrivarustatust üle maailma ega saa ka ainsaks faktoriks kahandamaks kasvuhoonegaaside emissiooni, kuid ta mängib tähelepanuväärset rolli antud alal. Tuumajaamad peavad oma ellujäämiseks ka tulevikus tõestama oma turvalisust ja seda, et jäätmete ladustamine ei kahjustaks mingilgi moel keskkonda. Tuumaelektrijaamadel on väga kõrge ehitusmaksumus, kuid selle kompenseerib väga madal kütuse hind. Gaasipõletusjaamu võib ehitada odavalt,

Füüsika
75 allalaadimist
thumbnail
20
pdf

Tuumaenergia

TUUMAENERGIA REFERAAT Õppeaines: Ökoloogia ja keskkonnakaitse Ehitusteaduskond Tallinn 2013 SISUKORD SISSEJUHATUS ....................................................................................................................................................3 1. TUUMAENERGIA OLEMUS ..........................................................................................................................4 1.1. Tuumaenergia tekkimine....................................................................................................................4 1.2. Tuumkütus..........................................................................................................................................4 1.3. Reaktorite liigitamine .........................................................................................................................5 2. TUUMAENERGIA KASUTAMINE MAAILMAS........

Ökoloogia ja keskkonnakaitse
20 allalaadimist
thumbnail
38
docx

Tuumaenergiauus (1)

1.1.1. TUUMAENERGIA REFERAAT Õppeaines: Ökoloogia Õpperühm: TEI-21 Tallinn 2015 SISUKOR Sissejuhatus................................................................................................................... 3 1.Ajalugu.......................................................................................

6 allalaadimist
thumbnail
8
doc

Tuumaenergia ja selle kasutamine.Radioaktiivsue kahjulikkus.

Tuumaenergia ja selle kasutamine Radioaktiivsus ja selle kahjulikkus Tuumaenergia ja selle kasutamine Iga päev puutume kokku energeetikaga: lampi põlema pannes või autoga sõites vajame energiat, kütust. Eesti Energeetika baseerub põlevkivi soojuselektrijaamadel ja sisseveetaval gaasil ning vedelküttel. Kuid selline energia tootmise viis pole kaugeltki ainuke. Tuntud on tuumaenergia ja maailmas aina tõuseb selle populaarsus. See on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses. Spetsialistid on kindlaks teinud et tuumaenergia on ainus tõeline elektriallikas inimkonna jaoks, mis ei põhjusta kasvuhooneefekti, happevihmu jm. Tuumfüüsika on raske ja keeruline ning selletõttu pole inimkond seda veel täielikult avastanud. Ikka veel tehakse tuumaenergias uusi avastusi ja saadakse aegajalt midagi uut teada. Tuumaenergia ajalugu: *1789

Füüsika
60 allalaadimist
thumbnail
9
docx

Tuumaelektrijaam

2008 Referaat Tuumaelektrijaam Füüsika Juhendaja: Indrek Karo Mari Parts Pelgulinna Gümnaasium Sisukord Tuumaelektrijaam.......................................................................................

Füüsika
108 allalaadimist
thumbnail
30
doc

„TUUMAENERGIA EESTILE – PERSPEKTIIVID JA PROBLEEMID”

kogu majapidamine võib olla ülesehitatud elektrienergiale – küttesüsteem, veevarustus (pumbad), valgustus, majapidamise seadmed jne. Kuna viimastel aastakümnetel on tarbimine kasvav, paneb see suurema koormuse ka energia tootjatele. Energiaturu tarbijate vajaduste rahuldamiseks otsitakse pingsalt lahendusi erinevate tootmisvõimaluste leidmiseks ja laiendamiseks – põlevkivi, taastuvenergia (tuulegeneraatorid, päikesepaneelid) ja ka tuumaenergia. Nendest viimase ehk tuumaenergia otstarbekusest Eestile on hakatud pingsamalt rääkima viimasel aastakümnel. Kus Eesti ja ka maailma energiaturul on olnud muutused ja üha laialdasemalt on alustatud taastuvenergia kasutuselevõttu. Tuumaenergia tootmisel on saadava energia hulk suur, ent peamised probleemid tekivad jääkproduktide ja keskkonnasaate näol. 1. ELEKTRIMAJANDUSE ARENG Eesti elektrisektoris on toimunud viimasel kümnendil suured muutused: valminud on

Eesti majandus
24 allalaadimist
thumbnail
2
doc

Tuumaenergia

Tuumaenergia Tuumaelektrijaamades kasutatakse ära tuumade lõhustumise tagajärjel vabanev energia. Reaktoris luuakse tuumaenergia tootmiseks kontrollitud ahelreaktsioon, kus energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad turbogeneraatorid. Kontrollitud ahelreaktsiooni käigus pommitatakse suure massiarvuga tuumi aeglustatud neutronitega, protsessi tulemusel liitub neutron tuumaga põhjustades viimase ergastatud oleku.. Tuumajõudude tõttu lõhustub ergastunud tuum kaheks erineva massiga osaks (kildtuumaks), põhjustades nii kahe uue isotoobi tekke. Lisaks isotoopide tekkele eraldub lõhustumisel alati ka neutroneid ning gamma-kiirgust. Analoogiliselt lõhustub näiteks

Füüsika
71 allalaadimist
thumbnail
14
doc

Tuumaenergia tulevik

......................................lk 3 Tuumaenergia tänapäeval: head ja halvad küljed........................................................lk 4 Tuumaenergia tulevik..............................................................................................lk 5, 6 Kasutatud allikad.........................................................................................................lk 7 2 Tuumaenergia ajalugu Et tuumaenergia tulevikku arutada, peab enne aru saama, mis see täpsemalt endast kujutab ja kuidas see tekkis. Tuumafüüsika kui teadusharu sündis koos radioaktiivsuse juhusliku avastamisega prantsuse teadlase Henri Becquereli poolt aastal 1896. Järgnevate aastakümnete jooksul on oma panuse selle teadusharu arengusse andnud mitmed nimekad teadlased. Seda veidi üle sajandi vanust avastust on rakendatud väga erinevates valdkondades -

Elektroenergeetika
5 allalaadimist
thumbnail
5
docx

Tuumaelektrijaam, aatomi tuuma lõhustumine

Referaat Tuumaelektrijaam ******* 10R2 ********* 2012 Tuumaelektrijaam Tuumaelektrijaam on elektrijaam, kus elektrienergiat saadakse aatomituuma lõhustumisest. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Tuumaelektrijaamad ei eralda kasvuhoonegaase ega saasta õhku. Normaalse töö korral tekib väga vähe tahkeid jäätmeid ja kütus on odav, sest seda kulub väga vähe. Sel põhjusel on maailmas väga suured tuumakütuse potentsiaalsed varud. Tänapäeval annavad tuumajaamad 17% kogu elektrienergiast, peaaegu

Füüsika
15 allalaadimist
thumbnail
9
doc

Tuumajaamad

laviinitaoliselt paljuneda. Varraste järkjärgulise reaktorist väljatõmbamise teel oli võimalik väga kindlalt ja täpselt reguleerida ahelreaktsiooni algusmomenti ja kiirust ning automaatselt hoida seda mistahes soovitaval tasemel. Peale selle olid reaktoris kanalid mõõteriistade ning neutronitega pommitamiseks aktiivtsooni viidavate ainete jaoks. Reaktori töö käigus tekkis väga ohtlik, suure läbimisvõimega neutron- ja gammakiirgus, seepärast tuli reaktor ümbritseda kahe-kolme meetri paksuse betoonkestaga, nn bioloogilise kaitsega. Tuumareaktoreid kasutatakse elektrienergia tootmiseks, teaduslikel uurimistöödel rakendavate võimsate neutronivoogude tekitamiseks, mitmesuguse kiirgusintensiivsuse ja poolestusajaga radioaktiivsete tehisisotoopide valmistamiseks, ainete kiiritamiseks nende füüsikaliste ja 3

Füüsika
82 allalaadimist
thumbnail
4
docx

Tuumaenergia kasutuselevõtu võimalustest Eestis

Tuumaenergia kasutuselevõtu võimalustest Eestis 1.Tuumajaamadest üldiselt 2.Eesti ajalooline seotus aatomienrgiaga 3.Tuuma reaktorid ja kütus 4.Ohud ja tuumakütuse jäägid 5.Majanduslik otstarbekus ja omanikud Viimastel ajal on hoogustunud debatt Eesti oma tuumajaama võimaliku ehitamise üle.Jaapanis asetleidnud 9 magnituudine maavärin, sellele järgnenud 38,5 m hiidlaine ja järgnenud avariid Fukushima Daiichi tuumajaamas on pannud inimesed muret tundma tuumaenergeetika tuleviku üle. Nagu ikka esineb nii poolt kui vastu käivaid seisukohti.

Energeetika
37 allalaadimist
thumbnail
6
doc

Tuumareaktorid

Teised rakendused on näiteks vabade neutronite tootmine (näiteks materjalide uurimiseks) ning teatud radioaktiivsete nukliidide tootmiseks, näiteks meditsiinilisel otstarbel.Püütakse välja töötada ka termotuumareaktorit, mis toodab energiat termotuumasünteesist. Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Uraan kui kõige alus: · Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat

Füüsika
25 allalaadimist
thumbnail
15
ppt

Tuumaenergia

pommitada, siis uraani aatomid lõhustuvad ning lõhustumise käigus vabaneb energia. · Esimest korda toodeti tuumareaktori abil elektrienergiat 20. detsembril 1951 USAs Idahos. Tuumakütuse tsükkel · Kõige rohkem on tuumaelektrijaamu USAs (104), järgnevad Prantsusmaa (59), Jaapan (56) ja Venemaa (31). · Rohkem kui poole oma elektrist saavad tuumajaama- dest Prantsusmaa, Leedu, Slovakkia, Rootsi ja Belgia. · Kilovatt-tundidelt on suurimad tuumaenergia tootjad USA (782 mld kWh), Prantsusmaa (430,9) ja Jaapan (280,7). · Tuumaelektrijaamades toodetakse 17% kogu maailma elektrienergiast. · Suurim tuumaenergia osakaal kogu elektrienergia toodangust on: Prantsusmaa (~78%) Leedu (~70%) Slovakkia ja Belgia (~55%) Rootsi (~50%) USA (~20%) · Valmimas on 27 uut reaktorit 11 riigis. Tuumaelektrijaamade paiknemine Kokku on maailmas kasutusel 439 kommertstuumaelektrijaama 30-s riigis.

Geograafia
62 allalaadimist
thumbnail
30
doc

Tuumareaktorid - kordamisküsimused

tuumareaktor. Lisaks soodustas mingil määral tuumarelvastuse ja sõjalaevade tuumajõuseadmete väljatöötamine energiatootmiseks sobivate tuumareaktorite ja tuumkütusetsükli arengut. USA ja NL lõid tööstuskompleksid suurte 235U koguste rikastamiseks ja plutooniumi 239Pu tootmiseks, aga seega ka eeldused reaktorikütuste valmistamiseks. Katsetati erinevaid reaktoritüüpe - sõjalaevade ning Pu-tootmise reaktoritest arenesid välja hilisemad energiatootmise reaktorid. 1940-1950-ndatel aastatel jõuti tuumasünteesini (kergete tuumade fusioon). Esimene tuumaelektri tootmine eksperimentalreaktorig toimus 1951. aastal USA-s. Esimene riigi elektrivõrku ühendatud 5 MWe võimsusega tuumaelektrijaam avati 1954. aastal NL-s. Reaktorid jaotatakse nelja põlvkonda. Enamus kasutusel olevatest jaamadest kuulub kas teisse või kolmandasse põlvkonda. Põlvkondasid eristavad peamiselt nõuded turvalisusele, efektiivsusele ning säästvale käidule.

Tuumareaktorid
21 allalaadimist
thumbnail
12
doc

Tuumaenergia materjal

Tuumaenergia Tuumaenergeetika on üks süsinikuvaba energeetika liike, sest tema tootmisel ei toimu süsinikku sisaldava kütuse põletamist ning õhku satub väga vähe globaalset soojenemist põhjustavaid süsinikuühendeid. Samas ei ole tuumaenergia taastuvenergia, sest teda saadakse tänapäeval fossiilsest kütusest ­uraanist - mille varud on lõplikud ja ammenduvad lähema saja aasta jooksul. Füüsikalised alused Kasutatud jooniseid veebidest http://230nsc1.phy-astr.gsu.edu/hbase/hframe.html ja http://www.hpwt.de/Kerne.htm Keemilised elemendid ja isotoobid Aatomid koosnevad positiivselt laetud tuumast, milles sisalduvad prootonid ja neutronid; ning

Füüsika
26 allalaadimist
thumbnail
14
ppt

Tuumaenergia

Tuumaenergia Tuumajaamad maailmas Tuumareaktorite sünni aeg on 1960.aastatel. Tänapäeval on 30 riigis käigus 439 tuumareaktorit. Enim reaktoreid USAs ­ 104, Prantsusmaal ­ 59, Jaapanis ­ 55 reaktorit. Suurima osana kogu elektrist toodab tuumaenergia Prantsusmaal (78%), Leedu (69%) ja Slovakkia (57%). Alternatiivne energiatootmine. Uurimisreaktorid Lisaks energiatootmisele ­ 56 riigis on 284 reaktorit, mida kasutatakse neutronkiirguse allikatena uurimistöös, radioaktiivsete isotoopide tootmises ja spetsialistide väljaõppes. Tootmine & reaktoritüübid Aeglaste neutronite toimel tuumkütuseid lõhustavad reaktorid ­ kütust kasutatakse üks kord ja kasutatud kütust ümber ei töödelda. Kiirete neutronite toimel tuumkütuseid lõhustavad reaktorid ­ kasutusel vaid kaks, sest hoolimata uraani- ning plutooniumkütuse

Geograafia
62 allalaadimist
thumbnail
15
doc

Tuumaenergeetika

Käesolevas ettekandes käsitlemegi üht energia liiki: tuumaenergeetika. Kaalume tuumaenergia plusse ning miinuseid, teeme tutvust tuumaelektrijaamadega ning arutame, kas selline energiatootmisviis sobiks Eestisse. Tuumaenergia ­ mis see on? Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaenergia peamine kasutusala on elektrienergia tootmine . Aga samas kasutatakse seda ka muudel keemilistel-füüsilistel protsessidel, nagu näiteks tuumapommid jms. Tuumaenergia ajalugu on võrdlemisi lühike. Alguse sai see sellest, kui 1789. aastal avastas Martin Heinrich Klaproth aine, mille ta nimetas uraaniks.

Füüsika
196 allalaadimist
thumbnail
6
doc

Tuumaeneergia ja selle kasutamine

Aatomituum on looduse fundamentaalne energiaallikas. Tüüpilises tuumareaktsioonis eraldub miljon korda rohkem energiat kui tavalises keemilises reaktsioonis. Päikeseenergia, mis tekib Päikese sügavuses toimuvates tuumaprotsessides, kujundab Maa ilmastikku ja kütab lõppkokkuvõttes, pärast mitmeid muundumusi, meie tuba ja hoiab alal meie keha elutegevuse. Juba pool sajandit on inimesed püüdnud omal käel tuumaprotsessidest energiat saada ja seda võrdlemisi edukalt ­ tuumaelektrijaamade osa planeedi elektrienergiatoodangus on umbes 18%. Mis on tuumaenergia? Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Tuumaenergia ajalugu Tuumaenergia ajalugu on lühike. 1789. a avastas Martin Heinrich Klaproth aine, mille ta nimetas uraaniks. Tegelikult oli saadud aine aga uraandioksiid, mitte puhas uraan. Klaproth suri 1817.a ega saanudki oma eksitusest teada

Füüsika
58 allalaadimist
thumbnail
7
doc

Tuumareaktorid

Briider (ingl breeder - aretaja, sigitaja) ehk paljundusreaktor on selline reaktoritüüp, kus tänu ahelreaktsioonile tekib tuumade lõhustumisel lõhustumisvõimelisi tuumi juurde. Seejuures ümbritseb Maa-sisest tuumajaama ehk georeaktorit vedela välistuuma asemel tahkes olekus niklist ja ränist ehk nikkelsilitsiidist koosnev sfäär. 2005. a. lepiti kokku kuue reaktoritehnoloogia valikus, mis peaksid kujundama tuumaenergia näo lähitulevikus. Kõiki valituid iseloomustab praegustega võrreldes parandatud jätkusuutlikkus, säästlikkus, ohutus, usaldatavus, kindlus terrorirünnaku ja tuumarelvamaterjali diversiooni suhtes ning pikk tööiga (> 60 a). Kõik reaktorid töötavad kõrgetel temperatuuridel, so temperatuuride vahemikus 510-1000°C. Võrdluseks, tänapäeva veereaktorite töötemperatuur on ~330°C. Seejuures neli tüüpi kuuest sobivad tootma

Füüsika
47 allalaadimist
thumbnail
13
doc

Ignalina tuumajaama ehitamise kohta, materjal väitluseks

Venemaa. Kuigi prantslased asuvad Balti riikidele tänu Euroopa Liidule administratiivselt ja ka lobi poolest kõige lähemal, ei saa pidada nende väljavaateid Ignalinas kõige paremateks. Prantsusmaa ettevõtted ehitavad praegu tuumareaktorit Soomes, kus nad on ehitusvigade tõttu varem kokku lepitud graafikust maha jäänud. Kuigi Euroopas kardetakse Venemaa energeetilist domineerimist nagu tuld, pole venelaste väljavaated Ignalinasse reaktorit ehitada sugugi kõige väiksemad. Tsernobõli katastroof seadis idanaabrite tehnoloogia kõva kahtluse alla, kuid nad on sellest ka kõvasti õppust võtnud ja projekteerinud senisest märkimisväärselt ohutumaid reaktoreid. Kuna praegu räägitakse maailmas rohkem kui paarisaja uue tuumareaktori ehitamisest, siis võib lähiaastatel tekkida Eesti kinnisvarabuumist tuttav olukord. Küsimus pole siis kardetavalt enam selles, kelle vahel valida, vaid kes on üleüldse kättesaadav.

Väitlus
30 allalaadimist
thumbnail
2
odt

Tuumaenergia

Tuumaenergia Tuumaseadmete ohutus Ohutuse tagamise suhtes on tuumaenergia arengu kestel väga palju tehtud ja saavutatud. Euroopa Liidu kui maailma suurima tuumaelektri tootja seadmetes ei ole kogu ajaloo jooksul toimunud ühtki tõsisemat avariid. Enamik praegustest töötavatest tuumareaktoritest on ohutuse suurendamiseks ja käidu lihtsustamiseks täiustatud. Eriti kehtib see uue põlvkonna kergevee reaktorite kohta, mille ehitusse on projekteeritud lihtsustatud hooldussüsteemid ja passiivsed, see on operaatorist sõltumatult toimivad, ohutussüsteemid.

Füüsika
13 allalaadimist
thumbnail
32
ppt

Energiamajandus

·Energiatarbe kiire kasv ·Kvalitatiivselt kõrgemal tasemel oleva energia vajaduse kasv ·Ressursi ja tarbimise ebaühtlane jaotus ·Traditsiooniliste energiaressursside ammendumine ·Energiajulgeolek (varustuskindlus) ·Keskkonnaprobleemid Maailma energiatarbe prognoos Maailma primaarenergia tarbe kasv 1980-2030 (miljardit tonni naftaekvivalendina) Globaalse energiatarbe rahuldamiseks kasutatavad energiaallikad Elektrienergia tootmine maailmas Süsi, nafta, gaas 10934 Hüdroenergia 2759 Tuumaenergia 2615 Geotermaalne, tuul, päike, puit, jäätmed 341 Kokku 16650 miljardit kWh Elektrienergia tootmine maailmas energiaallikate lõikes (mlrd. kWh) Hubbert'i kõver e. Peak Oil teooria Hubbert'i teooria põhineb sellel, et maavara hulk

Geograafia
147 allalaadimist
thumbnail
27
pptx

Tuumaenergia esitlus

Tuumaenergia Cattenomi tuumajaam Prantsusmaal Click to edit Master text styles Second level Third level Fourth level Fifth level Mis on tuumaenergia? Tuumaenergiat saadakse kontrollitud tuumareaktsiooni käigus. Tuumareaktsioon on kahe aatomituuma või elementaarosakese kokkupõrge, mille käigus tekkib tuumalõhenemine ning energia vabanemine. Tuumaenergia avastas prantsuse füüsik Henri Becquerel 1896. aastal. Reaktoris luuakse tuumaenergia tootmiseks kontrollitud ahelreaktsioon, kus energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad

Füüsika
27 allalaadimist
thumbnail
4
doc

ALTERNATIIVSED ENERGIAALLIKAD

võimsamad päikesepaneelid, mis suudaksid ka vähesest päikesenergiast palju elektri- vm. energiat toota. Tehnoloogia areneb iga aastaga ning leiutatakse uusi võimalusi päikeseenergia kogumiseks, nii et arengut tuleb lihtsalt samas vaimus jätkata. 2. Tuuleenergia Tuule jõudu kasutati juba ammustel aegadel. 1970. aastate naftakriisi ajal hakati Euroopas ja USA-s taas tuuleenergiat elektriks muutma. Nüüdseks on tuulikute tehnoloogia jõudsasti arenenud ja tuulikutega toodetud elektrienergia hulk suurenenud. Kõige rohkem tuulikuid on Saksamaal, USA's, Taanis, Hispaanias ja Indias. Maailma suurim tuulikupank asub Californias, kus töötab ligi 14 000 tuulikut. Probleemid Tuuleenergia õigustab end majanduslikult vaid nendes piirkondades, kus tuule keskmine kiirus on vähemalt 6 m/s. Madalama keskmise tuulekiiruse puhul ei ole tuulikute rajamine otstarbekas. 1

Geograafia
110 allalaadimist
thumbnail
3
docx

Tuumaenergia

Selle saavutuse tegi võimalikuks paljude maade teadlaste eelnev töö ioniseeriva kiirguse, tuumamuundumiste ja tuumalõhestumise uurimisel, peamiselt 1930-ndate aastate lõpul. Ühtlasi sai tohutu energiahulga vabanemisel raskete tuumade lõhustumises neutronite toimel praktikas kinnituse A. Einsteini kuulus energia ja massi ekvivalentsuse põhimõte. Kuigi II Maailmasõja tõttu oli eesmärgiks tuumapommi tarvis plutooniumi tootmise seadme loomine, kinnitas selle katse edu ühtlasi rahumeelse tuumaenergia võimalikkust. Sõja olukorras ja seose tõttu tuumarelva väljatöötamisega salastati rangelt kõik tuuma valdkonna uurimised ja arendused. Erandiks oli mõningane infovahetus USA ja Ühendkuningriigi vahel ning USA tuumasaavutuste spionaaz NLiidu kasuks. Tulemusena arendas iga suurriik tuumatehnikat oma vajaduste ja võimaluste piires iseseisvalt. Näiteks, käivitati NLiidu esimene reaktor F-1 Moskvas detsembris 1946 ja Ühendkuningriigi reaktor GLEEP Harwellis augustis 1947.

Füüsika
19 allalaadimist
thumbnail
3
docx

TUUMAENERGIA KASUTAMINE

TUUMAENERGIA KASUTAMINE Maailmas toodetakse rohkem kui 16% kogu elektrienergiast tuumkütuse baasil. Kokku on maailmas kasutusel 439 kommertstuumaelektrijaama 30-s riigis. Lisaks sellele on kasutusel 284 õppereaktorit 56 riigis ning umbes 220 reaktorit on paigutatud laevadele või allveelaevadele.Tuumaenergia katab suurima protsendi kogu riigi elektrivajadusest järgmistes riikides: Prantsusmaa (~78%), Slovakkia ja Belgia (~55%), Rootsi (~50%), USA (~20%).Kuigi osades Euroopa riikides, nagu Saksamaa ning Austria[1] , kaldub avalik arvamus tuumaelektrijaamade kasutamise vastu, viitavad arengud üldisele tuumaenergia kasutamise tõusule. Nii on näiteks Hiina ja India seadnud eesmärgiks oluliselt suurendada

Füüsika
10 allalaadimist
thumbnail
2
doc

Lõpueksami sooritajale - kokkuvõtted

majandussektoreid. Suurema osa toodetud energiast tarbivad kõrgelt arenenud riigid (USA 35% kogu maailma energiatoodangust). Praegusajal kasutatakse peamiselt viit energiaallikat: 1) Nafta ja naftasaadused annavad umbes 40% kogu energiavajadusest 2) Kiiresti on kasvanud maagaasi tootmine ja tarbimine 3) Kivisüsi on arengumaades kõige olulisem energiaallikas nii elektri kui ka soojuse tootmisel 4) Veejõud ja tuumaenergia, mida kasutatakse peamiselt elektrienergia saamiseks, annavad kokku vaid kümnendiku vajaminevast energiast. 5) Viimastel aastakümnetel on üha enam kasutama hakatud alternatiivseid energialiike ­ tuule,päikese, maasisest ja bioenergiat. 3.2 Nafta ja gaasitööstus Ligi kaks kolmandikku maailma naftavarudest paikneb LähisIdas. LadinaAmeerika suurimad naftaammutajad on Mehhiko ja Venezuela, samuti Brasiilia

Geograafia
111 allalaadimist
thumbnail
2
odt

Tuumaenergia ja alternatiivsed energiaallikad

Nagu teistekgi energiatoodangutel, on ka tuumaenergial pluuse ja miinuseid. Plussideks oleks: Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat umbes viiekümneks aastaks. Rikkalikumad uraanileiukohad on Kanadas, USA-s ja LAV-s. Tuumaelektrijaamade rajamine on jõukohane rikastele kõrgelt arenenud riikidele, sest kõrgtehnoloogial põhinev tootmine nõuab väga suuri kapitalimahutusi. Kolm suurriiki ­ USA, Prantsusmaa ja Jaapan toodavad maailma tuumaenergiast. Miinusteks oleks:

Geograafia
39 allalaadimist
thumbnail
4
docx

Tuumaenergia

maa-alustes kaevandusdes. Kuigi uraani leidub igal pool maailmas, on kontsentreeritud maagid pigem erandid. Kui kindlad uraani aatomid ahelreaktsioonis lõhustuvad, vabaneb energia. Kui tuumaelektrijaamas toimub selline lõhustumine aeglaselt, siis tuumapommis toimub see väga kiiresti, kuid mõlemal juhul peab lõhustumine olema hoolikalt juhitud. Tuumade lõhustumine toimub kõige paremini kui kasutatakse isotoope, sama aatomnumbriga kuid erineva neutronite arvuga aatomeid - uraan 235 (või plutoonium 239). Uraan 235 on tuntud kui lõhustuv isotoop tänu oma kalduvusele ahelreaktsioonides lõheneda, vabastades energiana soojust. U- 235 lõhustumisel vabaneb kaks või kolm neutornit, mis teiste U-235 aatomitega põrkudes omakorda need lõhustavad, vabastades jällegi kaks kuni kolm neutronit. Ahelreaktsioon leiab aset ainult niinimetatud kriitilise massi ehk piisava arvu U-235 aatomite olemasolul. Seejuures on iga 1000

Geograafia
24 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun