Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Tuumaenergia kasutamine, füüsika - sarnased materjalid

tuumaenergia, reaktor, tuumaelektrijaama, tuumajaam, tuumaelektrijaamad, reaktorit, tuumaelektrijaamade, uraan, energeetika, gaas, elektrienergia, tehnoloogia, tuumajaamad, ladustamine, tuumaenergeetika, konkurents, tuumajaamade, tuumkütus, rbmk, austraalia, tšernobõli, reaktoris, tehnoloogiad, allikaid, seisukohast, elekter, survel
thumbnail
11
doc

Tuumaenergia kasutamine

TUUMAENERGIA KASUTAMINE KELLY T. 9A aprill 2008 Sisukord I Tutvuseks lk 3 II Vajadus tuumaenergia järele lk 3 III Kuidas tuumaenergia tekib? lk 4 IV Tänapäevased reaktorid lk 4 V Tuumaenergia kasutamine maailmas lk 5 VI Tuumariigid VII Varitsev oht lk 6 VIII Tuumaenergia kasutamine Eesti lähisriikides lk 7 IX Korduma kippuvad küsimused lk 8 X Kokkuvõte lk 10 Kasutatud materjalid lk 11 2 I. Tutvustuseks Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia,

Füüsika
134 allalaadimist
thumbnail
5
doc

Tuumaenergia

Tuumaenergia Tuumaenergia on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses. Tänaseks on spetsialistidele piisavalt selge, et tuumaenergia on ainus tõeline elektriallikas inimkonna jaoks, mis ei põhjusta kasvuhooneefekti, happevihmu jm. Fossiilsed kütused annavad praegu üle poole maailma elektritoodangust; hüdroenergia ja tuumaenergia osatähtsus on tunduvalt väiksem. Tuumaenergia üksi ei kindlusta turvalisust ja pidevat elektrivarustatust üle maailma ega saa ka ainsaks faktoriks kahandamaks kasvuhoonegaaside emissiooni, kuid ta mängib tähelepanuväärset rolli antud alal. Tuumajaamad peavad oma ellujäämiseks ka tulevikus tõestama oma turvalisust ja seda, et jäätmete ladustamine ei kahjustaks mingilgi moel keskkonda. Tuumaelektrijaamadel on väga kõrge ehitusmaksumus, kuid selle kompenseerib väga madal kütuse hind. Gaasipõletusjaamu võib ehitada odavalt,

Füüsika
75 allalaadimist
thumbnail
5
docx

Tuumaenergia

Tuumaenergia Koostas: Juhendas : Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse

Loodus
12 allalaadimist
thumbnail
28
rtf

Tuumaenergeetika uurimistöö

JÕGEVA ÜHISGÜMNAASIUM 11.A klass Siim Kaaver Tuumaenergeetika Uurimustöö Juhendaja: õp. Heli Toit Jõgeva 2010 SISUKORD Sissejuhatus..................................................................................................................... 1. Mis on tuumaenergia?........................................................................................... 2. Kuidas tuumaenergia tekib?.................................................................................. 3. Tuumaenergia kasulikkus...................................................................................... 4. Tuumkütus............................................................................................................. 5. Tuumareaktor........................................................................................................ 6. Levinuimad reaktoritüübid.....

Füüsika
121 allalaadimist
thumbnail
20
pdf

Tuumaenergia

TUUMAENERGIA REFERAAT Õppeaines: Ökoloogia ja keskkonnakaitse Ehitusteaduskond Tallinn 2013 SISUKORD SISSEJUHATUS ....................................................................................................................................................3 1. TUUMAENERGIA OLEMUS ..........................................................................................................................4 1.1. Tuumaenergia tekkimine....................................................................................................................4 1.2. Tuumkütus..........................................................................................................................................4 1.3. Reaktorite liigitamine .........................................................................................................................5 2. TUUMAENERGIA KASUTAMINE MAAILMAS........

Ökoloogia ja keskkonnakaitse
20 allalaadimist
thumbnail
30
doc

„TUUMAENERGIA EESTILE – PERSPEKTIIVID JA PROBLEEMID”

kogu majapidamine võib olla ülesehitatud elektrienergiale – küttesüsteem, veevarustus (pumbad), valgustus, majapidamise seadmed jne. Kuna viimastel aastakümnetel on tarbimine kasvav, paneb see suurema koormuse ka energia tootjatele. Energiaturu tarbijate vajaduste rahuldamiseks otsitakse pingsalt lahendusi erinevate tootmisvõimaluste leidmiseks ja laiendamiseks – põlevkivi, taastuvenergia (tuulegeneraatorid, päikesepaneelid) ja ka tuumaenergia. Nendest viimase ehk tuumaenergia otstarbekusest Eestile on hakatud pingsamalt rääkima viimasel aastakümnel. Kus Eesti ja ka maailma energiaturul on olnud muutused ja üha laialdasemalt on alustatud taastuvenergia kasutuselevõttu. Tuumaenergia tootmisel on saadava energia hulk suur, ent peamised probleemid tekivad jääkproduktide ja keskkonnasaate näol. 1. ELEKTRIMAJANDUSE ARENG Eesti elektrisektoris on toimunud viimasel kümnendil suured muutused: valminud on

Eesti majandus
24 allalaadimist
thumbnail
38
docx

Tuumaenergiauus (1)

1.1.1. TUUMAENERGIA REFERAAT Õppeaines: Ökoloogia Õpperühm: TEI-21 Tallinn 2015 SISUKOR Sissejuhatus................................................................................................................... 3 1.Ajalugu.......................................................................................

6 allalaadimist
thumbnail
14
doc

Tuumaenergia tulevik

......................................lk 3 Tuumaenergia tänapäeval: head ja halvad küljed........................................................lk 4 Tuumaenergia tulevik..............................................................................................lk 5, 6 Kasutatud allikad.........................................................................................................lk 7 2 Tuumaenergia ajalugu Et tuumaenergia tulevikku arutada, peab enne aru saama, mis see täpsemalt endast kujutab ja kuidas see tekkis. Tuumafüüsika kui teadusharu sündis koos radioaktiivsuse juhusliku avastamisega prantsuse teadlase Henri Becquereli poolt aastal 1896. Järgnevate aastakümnete jooksul on oma panuse selle teadusharu arengusse andnud mitmed nimekad teadlased. Seda veidi üle sajandi vanust avastust on rakendatud väga erinevates valdkondades -

Elektroenergeetika
5 allalaadimist
thumbnail
3
docx

Tuumaenergia referaat

Tuumaenergia olemus Tuumafüüsika kui teadusharu sündis koos radioaktiivsuse juhusliku avastamisega prantsuse teadlase Henri Becquereli poolt aastal 1896. Järgnevate aastakümnete jooksul on oma panuse selle teadusharu arengusse andnud mitmed nimekad teadlased. Seda veidi üle sajandi vanust avastust on rakendatud väga erinevates valdkondades tuumaenergia rakendusi on ära kasutatud sõjatööstuses, samas teisalt on praktiliselt võimatu kujutada tänapäevast elu ette ilma selle rakendusteta meditsiinis või energiatootmises. Tuumaenergeetika erineb oluliselt teistest energia saamise viisidest. Tuumaenergiat loetakse säästvaks, sest energia tootmise protsessis ei eraldu CO 2. Samas võib tuumajaamaga kaasneda oht radioaktiivse saaste kandumiseks keskkonda.. Lisaks

Geograafia
36 allalaadimist
thumbnail
9
doc

Tuumajaamad

laviinitaoliselt paljuneda. Varraste järkjärgulise reaktorist väljatõmbamise teel oli võimalik väga kindlalt ja täpselt reguleerida ahelreaktsiooni algusmomenti ja kiirust ning automaatselt hoida seda mistahes soovitaval tasemel. Peale selle olid reaktoris kanalid mõõteriistade ning neutronitega pommitamiseks aktiivtsooni viidavate ainete jaoks. Reaktori töö käigus tekkis väga ohtlik, suure läbimisvõimega neutron- ja gammakiirgus, seepärast tuli reaktor ümbritseda kahe-kolme meetri paksuse betoonkestaga, nn bioloogilise kaitsega. Tuumareaktoreid kasutatakse elektrienergia tootmiseks, teaduslikel uurimistöödel rakendavate võimsate neutronivoogude tekitamiseks, mitmesuguse kiirgusintensiivsuse ja poolestusajaga radioaktiivsete tehisisotoopide valmistamiseks, ainete kiiritamiseks nende füüsikaliste ja 3

Füüsika
82 allalaadimist
thumbnail
9
docx

Tuumaelektrijaam

.........................................................8 Eelised ja puudused................................................................................10 Keskkonnamõjud - ühiskonnasaaste.......................................................10 Keskkonnamõjud ­ vesijahutus reaktorites...............................................11 Kasutatud kirjandus....................................................................................12 Tuumaelektrijaam Tuumaelektrijaam ehk tuumajaam ehk tuumajõujaam ehk aatomielektrijaam on elektrijaam, kus elektrienergiat saadakse aatomituuma lõhustumisest. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Tuumaelektrijaamad ei eralda kasvuhoonegaase ega saasta õhku. Normaalse töö korral tekib väga vähe tahkeid jäätmeid ja kütus on odav, sest seda kulub väga vähe. Sel põhjusel on maailmas väga suured tuumakütuse potentsiaalsed varud.

Füüsika
108 allalaadimist
thumbnail
6
doc

Tuumareaktorid

Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Uraan kui kõige alus: · Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat umbes viiekümneks aastaks. · Rikkalikumad uraanileiukohad on Kanadas, USA-s ja LAV-s. (Kasutatakse peamiselt Uraan-238 isotoopi ja Pu-239 isotoopi. Uraan-238 peab rikastama niipalju et U-235 isotoobi protsent oleks vähemalt 3. )

Füüsika
25 allalaadimist
thumbnail
2
docx

Tuumaenergia

Samas võib tuumajaamaga kaasneda oht radioaktiivse saaste kandumiseks keskkonda.. Lisaks eraldub , nii nagu teistestki elektrijaamadest, suurtes kogustes (mitteradioaktiivset) veeauru ja alati on energia saamisega seotud kaudsed emissioonid. KASU. Tuumaenergiat on kasutatud elektri tootmisel juba 50 aastat. Selle aja jooksul on tuumaenergeeti ka läbinud pika arengutee. Praeguseks on ehitatud ligi pooltuhat erineva konstruktsioon iga tuumajaama. Elektrienergia t vajatakse üha enam. tuumaenergia on üks suuremaid elektrienergia allikaid, 443 tuumajaamas üle maailma toodetakse 17% kogu elektrienergia st ja seda kasutab umbes miljard inimest. tuumaenergia kasutamine on elektri tootmiseks paratamatu mitmel põhjusel. Esiteks, ei saa lõputult jätkuda seni domineerinud fossiilsete kütuste põletamine nende ammendumise tõttu. Samuti kaasneb sellega lubamatult suurte nn kasvuhoonegaas ide koguste paiskumine atmosfääri, mis põhjustab kliima soojenemist.

Füüsika
7 allalaadimist
thumbnail
3
docx

Tuumaenergia

Selle saavutuse tegi võimalikuks paljude maade teadlaste eelnev töö ioniseeriva kiirguse, tuumamuundumiste ja tuumalõhestumise uurimisel, peamiselt 1930-ndate aastate lõpul. Ühtlasi sai tohutu energiahulga vabanemisel raskete tuumade lõhustumises neutronite toimel praktikas kinnituse A. Einsteini kuulus energia ja massi ekvivalentsuse põhimõte. Kuigi II Maailmasõja tõttu oli eesmärgiks tuumapommi tarvis plutooniumi tootmise seadme loomine, kinnitas selle katse edu ühtlasi rahumeelse tuumaenergia võimalikkust. Sõja olukorras ja seose tõttu tuumarelva väljatöötamisega salastati rangelt kõik tuuma valdkonna uurimised ja arendused. Erandiks oli mõningane infovahetus USA ja Ühendkuningriigi vahel ning USA tuumasaavutuste spionaaz NLiidu kasuks. Tulemusena arendas iga suurriik tuumatehnikat oma vajaduste ja võimaluste piires iseseisvalt. Näiteks, käivitati NLiidu esimene reaktor F-1 Moskvas detsembris 1946 ja Ühendkuningriigi reaktor GLEEP Harwellis augustis 1947.

Füüsika
19 allalaadimist
thumbnail
8
doc

Tuumaenergia ja selle kasutamine.Radioaktiivsue kahjulikkus.

Tuumaenergia ja selle kasutamine Radioaktiivsus ja selle kahjulikkus Tuumaenergia ja selle kasutamine Iga päev puutume kokku energeetikaga: lampi põlema pannes või autoga sõites vajame energiat, kütust. Eesti Energeetika baseerub põlevkivi soojuselektrijaamadel ja sisseveetaval gaasil ning vedelküttel. Kuid selline energia tootmise viis pole kaugeltki ainuke. Tuntud on tuumaenergia ja maailmas aina tõuseb selle populaarsus. See on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses. Spetsialistid on kindlaks teinud et tuumaenergia on ainus tõeline elektriallikas inimkonna jaoks, mis ei põhjusta kasvuhooneefekti, happevihmu jm. Tuumfüüsika on raske ja keeruline ning selletõttu pole inimkond seda veel täielikult avastanud. Ikka veel tehakse tuumaenergias uusi avastusi ja saadakse aegajalt midagi uut teada. Tuumaenergia ajalugu: *1789

Füüsika
60 allalaadimist
thumbnail
4
doc

ALTERNATIIVSED ENERGIAALLIKAD

energiavõsa. Võsa kasvatamine tagab, et metsade raie väheneks tunduvalt. Õhku lenduvate gaaside vastu on soojuselektrijaamade korstendele jm. Pandud filtrid, et ohtlikud gaasid atmosfääri ei pääseks. Mida peaks tegema? Üldiselt peaks energiavõsa kasvatamist levitama ka arengumaadesse ning ehitama sinna ka muid elektrijaamu, et metsi nii palju maha ei võetaks. Gaaside vastu tuleks kasutusele võtta veel paremad filtrid, et atmosfääri mürgistus oleks minimaalne. 5. Tuumaenergia Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat umbes viiekümneks aastaks. Rikkalikumad uraanileiukohad on Kanadas, USA-s ja LAV-s.

Geograafia
110 allalaadimist
thumbnail
5
docx

Tuumaelektrijaam, aatomi tuuma lõhustumine

vähe. Sel põhjusel on maailmas väga suured tuumakütuse potentsiaalsed varud. Tänapäeval annavad tuumajaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Esmakordselt toodeti tuumareaktori abil elektrienergiat 20. detsembril 1951 USAs Idahos. Esimene tuumaelektrijaam alustas tööd 27. juunil 1954 NSV Liidus Kaluga oblastis Obninskis. 2005. aasta seisuga oli maailma tuumaelektrijaamades 443 tegutsevat reaktorit. Tuumaelektrijaamades kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat umbes viiekümneks aastaks. Rikkalikumad uraanileiukohad on Kanadas, USA-s. Tuumaelektrijaama ehitamine ja käigushoidmine on väga kallis. Seda eeskätt turvakaalutlustel, sest õnnetuse puhul võib tekkida keskkonnale ülisuur kahju. Tuumakütuse jäägid on radioaktiivsed, seega ülimalt mürgised, ja nende lagunemiseks kulub sajandeid. Tuumaelektrijaamad võivad põhjustada

Füüsika
15 allalaadimist
thumbnail
2
doc

Tuumaenergia

Tuumaenergia Tuumaelektrijaamades kasutatakse ära tuumade lõhustumise tagajärjel vabanev energia. Reaktoris luuakse tuumaenergia tootmiseks kontrollitud ahelreaktsioon, kus energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad turbogeneraatorid. Kontrollitud ahelreaktsiooni käigus pommitatakse suure massiarvuga tuumi aeglustatud neutronitega, protsessi tulemusel liitub neutron tuumaga põhjustades viimase ergastatud oleku.. Tuumajõudude tõttu lõhustub ergastunud tuum kaheks erineva massiga osaks

Füüsika
71 allalaadimist
thumbnail
4
docx

Tuumaenergia kasutuselevõtu võimalustest Eestis

magnituudine maavärin, sellele järgnenud 38,5 m hiidlaine ja järgnenud avariid Fukushima Daiichi tuumajaamas on pannud inimesed muret tundma tuumaenergeetika tuleviku üle. Nagu ikka esineb nii poolt kui vastu käivaid seisukohti. Kahjuks pole tuumajaama vastastel eriti muid põhjendusi kui vaid see, kui ohtlik see on. Kuid maailmas on söe, gaasi ja hüdroelektrijaamades tunduvalt rohkem õnnetusi kui tuumajaamades. Praegu on maailmas umbes 443 töötavat tuumareaktorit ja ajast, mil esimene tuumajaam aastal 1954 NSVL tööd alustas, on olnud vaid 3 suuremat avariid. Ja tuletagem kasvõi meelde ajaloost seda, kuidas 1906. aastal hävis terve San Fransisco linn USA-s. Linn ei hävinud mitte niivõrd maavärina läbi, kui sellega seoses puhkenud tulekahju tõttu. Selle aga põhjustasid linna läbinud gaasitrassid. Kas need energiakandjatena on vähemohtlikud? Ka praegu teostatav Nord Streami projekt meie ranniku lähistel kujutab meile ohtu

Energeetika
37 allalaadimist
thumbnail
4
docx

Tuumaelektrijaam

Tuumaelektrijaam Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Joonis. 8. Tuumaelektrijaama struktuuriskeem. Allikas: http://ru.wikipedia.org/wiki/Атомная_электростанция Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat umbes viiekümneks aastaks. Rikkalikumad uraanileiukohad on Kanadas, USA-s ja LAV-s. Tuumaelektrijaamade rajamine on jõukohane rikastele kõrgelt arenenud riikidele, sest kõrgtehnoloogial põhinev tootmine nõuab väga suuri kapitalimahutusi. Kolm suurriiki – USA,

Füüsika
6 allalaadimist
thumbnail
2
odt

Tuumaenergia

Tuumaenergia Tuumaseadmete ohutus Ohutuse tagamise suhtes on tuumaenergia arengu kestel väga palju tehtud ja saavutatud. Euroopa Liidu kui maailma suurima tuumaelektri tootja seadmetes ei ole kogu ajaloo jooksul toimunud ühtki tõsisemat avariid. Enamik praegustest töötavatest tuumareaktoritest on ohutuse suurendamiseks ja käidu lihtsustamiseks täiustatud. Eriti kehtib see uue põlvkonna kergevee reaktorite kohta, mille ehitusse on projekteeritud lihtsustatud hooldussüsteemid ja passiivsed, see on operaatorist sõltumatult toimivad, ohutussüsteemid.

Füüsika
13 allalaadimist
thumbnail
7
doc

Tuumareaktorid

see USA geofüüsik välja hüpoteesiga, et Maa sisemuses paikneb looduslik tuumareaktor - georeaktor. Üldlevinud arusaama kohaselt asub Maa sisemuses umbes 1250-kilomeetrise läbimõõduga tahkest niklist ja rauast koosnev sisetuum, mida ümbritseb umbes 3500-kilomeetrise diameetriga sulas olekus rauast ja niklist välistuum. Herndoni hüpoteesi kohaselt on Maa sisemuses hoopis kaheksakilomeetrise läbimõõduga uraani sisaldav kera, mis töötab nagu kiire briider-reaktori tüüpi tuumajaam. Briider (ingl breeder - aretaja, sigitaja) ehk paljundusreaktor on selline reaktoritüüp, kus tänu ahelreaktsioonile tekib tuumade lõhustumisel lõhustumisvõimelisi tuumi juurde. Seejuures ümbritseb Maa-sisest tuumajaama ehk georeaktorit vedela välistuuma asemel tahkes olekus niklist ja ränist ehk nikkelsilitsiidist koosnev sfäär. 2005. a. lepiti kokku kuue reaktoritehnoloogia valikus, mis peaksid kujundama tuumaenergia näo lähitulevikus

Füüsika
47 allalaadimist
thumbnail
2
odt

Tuumaenergia ja alternatiivsed energiaallikad

Nagu teistekgi energiatoodangutel, on ka tuumaenergial pluuse ja miinuseid. Plussideks oleks: Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tänapäeval annavad tuumaelektrijaamad 17% kogu elektrienergiast, peaaegu sama palju kui hüdroelektrijaamad. Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat umbes viiekümneks aastaks. Rikkalikumad uraanileiukohad on Kanadas, USA-s ja LAV-s. Tuumaelektrijaamade rajamine on jõukohane rikastele kõrgelt arenenud riikidele, sest kõrgtehnoloogial põhinev tootmine nõuab väga suuri kapitalimahutusi. Kolm suurriiki ­ USA, Prantsusmaa ja Jaapan toodavad maailma tuumaenergiast. Miinusteks oleks:

Geograafia
39 allalaadimist
thumbnail
15
doc

Tuumaenergeetika

Ühtteist on ka juba välja pakutud, kuid otsusele ei ole veel jõutud. Käesolevas ettekandes käsitlemegi üht energia liiki: tuumaenergeetika. Kaalume tuumaenergia plusse ning miinuseid, teeme tutvust tuumaelektrijaamadega ning arutame, kas selline energiatootmisviis sobiks Eestisse. Tuumaenergia ­ mis see on? Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaenergia peamine kasutusala on elektrienergia tootmine . Aga samas kasutatakse seda ka muudel keemilistel-füüsilistel protsessidel, nagu näiteks tuumapommid jms. Tuumaenergia ajalugu on võrdlemisi lühike. Alguse sai see sellest, kui 1789.

Füüsika
196 allalaadimist
thumbnail
30
doc

Tuumareaktorid - kordamisküsimused

tuumajaamaga kaasneda võivaid riske ning optimeerida nende tööd. Nii on näiteks Tšernobõlis kasutatud (Leedu Ignalina tuumajaamas kasutati analoogseid) RBMK-tüüpi teise põlvkonna reaktoritest astutud suur samm edasi kaasaegsete kolmanda põlvkonna reaktoriteni. Neljanda põlvkonna reaktorite kommertskasutusse võtmist ei ole järgmise 15 aasta jooksul ette näha. 2. Tuumakütuse (uraani, tooriumi) varud, saadavus, tootjamaad. Uraan: leidub looduses ainult ühendeis. Looduslik uraan on isotoopide U234(0,006%), U235(0,72%) ja U238(99,274%) segu. Isotoobi U234 kogus on väike ja ebaoluline. Uraan on väga levinud element looduses. Ntx: leidub merevees, graniidis, settekivimis. Kaevandatud uraani rikastatakse vastavaks reaktori nõuetele. Rikastamine on teiste sõnadega uraani isotoobi U-235 protsendi tõstmine kütuses. Reaktori tööks piisav rikastusprotsent jääb tavaliselt alla 10%, pigem 5% lähedale

Tuumareaktorid
21 allalaadimist
thumbnail
12
doc

Tuumaenergia materjal

Tuumaenergia Tuumaenergeetika on üks süsinikuvaba energeetika liike, sest tema tootmisel ei toimu süsinikku sisaldava kütuse põletamist ning õhku satub väga vähe globaalset soojenemist põhjustavaid süsinikuühendeid. Samas ei ole tuumaenergia taastuvenergia, sest teda saadakse tänapäeval fossiilsest kütusest ­uraanist - mille varud on lõplikud ja ammenduvad lähema saja aasta jooksul. Füüsikalised alused Kasutatud jooniseid veebidest http://230nsc1.phy-astr.gsu.edu/hbase/hframe.html ja http://www.hpwt.de/Kerne.htm Keemilised elemendid ja isotoobid Aatomid koosnevad positiivselt laetud tuumast, milles sisalduvad prootonid ja neutronid; ning

Füüsika
26 allalaadimist
thumbnail
12
doc

Alternatsiivsed energialiigid

juhtimissüsteemid, klaasplastikust survetorud, täispuhutavad paisud jms. Hüdroenergiat saab toota vaid seal, kus on suure veehulgaga jõed või rajatud tammid. Kuna Norras on väga palju kärestikulisi kiirevoolulisi jõgesid, on seal hüdroenergia osakaal kogu energia tootmises 99%. Kõige rohkem kasutatakse hüdroenergiat: 1. Norras ­ 99% 2. Brasiilias ­ 83,3% 3. Venezuelas ­ 66% 4. Kanadas ­ 57,5% 5. Venemaal 17,2% Tuumaenergia Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Energeetika seisukohast on see elektrienergia, mida saadakse tänu tuumareaktsioonidele tuumaelektrijaamades. Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses, ökonoomselt ja õhusaastevabalt. Uuringud näitavad, et tuumaenergiast saadud elekter on söest toodetust isegi hulga odavam

Geograafia
51 allalaadimist
thumbnail
2
doc

Lõpueksami sooritajale - kokkuvõtted

majandussektoreid. Suurema osa toodetud energiast tarbivad kõrgelt arenenud riigid (USA 35% kogu maailma energiatoodangust). Praegusajal kasutatakse peamiselt viit energiaallikat: 1) Nafta ja naftasaadused annavad umbes 40% kogu energiavajadusest 2) Kiiresti on kasvanud maagaasi tootmine ja tarbimine 3) Kivisüsi on arengumaades kõige olulisem energiaallikas nii elektri kui ka soojuse tootmisel 4) Veejõud ja tuumaenergia, mida kasutatakse peamiselt elektrienergia saamiseks, annavad kokku vaid kümnendiku vajaminevast energiast. 5) Viimastel aastakümnetel on üha enam kasutama hakatud alternatiivseid energialiike ­ tuule,päikese, maasisest ja bioenergiat. 3.2 Nafta ja gaasitööstus Ligi kaks kolmandikku maailma naftavarudest paikneb LähisIdas. LadinaAmeerika suurimad naftaammutajad on Mehhiko ja Venezuela, samuti Brasiilia

Geograafia
111 allalaadimist
thumbnail
6
doc

Energiamajandus | Geograafia 10. klass

veondusliigid ­ torujuhtmed maismaal ja tankerid meredel, mida rakendati ka maagaasi tootmisel ja transpordil. Kaasaegne energiamajandus Nüüdisajal kasutatakse peamiselt 5 energiaallikat. Nafta ja naftasaadused annavad ~40% kogu energiavajadusest. Kiiresti on kasvanud maagaasi tootmine ja tarbimine. Kuigi kivisöe osatähtsus on pidevalt vähenenud, on see kütuseliik arengumaades ikka veel kõige olulisem energiaallikas nii elektri kui soojuse tootmisel. Veejõud ja tuumaenergia, mida kasutatakse peamiselt elektrienergia saamiseks, annavad kokku vaid kümnendiku vajaminevast energiast. Viimastel aastatel on üha enam hakatud kasutama alternatiivseid energialiike ­ tuule-, päikese-, maasisest ja bioenergiat, kuid nende osatähtsus energiamajanduses tervikuna on tagasihoidlik. Inimkonna kasutuses on veel mitmeid energialiike nagu maa pöörlemise energia, gravitatsioonienergia, termotuumaenergia, midapraeguse tehnoloogia abil ei osata või

Geograafia
91 allalaadimist
thumbnail
8
docx

Tuumaelektrijaam

detsembril 1951 USAs Idahos. Esimene tuumaelektrijaam oli Obninski tuumaelektrijaam mis alustas tööd 27. juunil 1954 NSV Liidus Kaluga oblastis Obninskis. Esimene, mis oli tööstusliku võimsusega oli Calder Halli tuumaelektrijaam Sellafieldis. 2011. aasta mai seisuga oli maailma tuumaelektrijaamades 440 tegutsevat reaktorit, mis kokku tootsid 17% maailma elektrienergiast. Kõige rohkem on reaktoreid USAs arvuga 104, järgmisena Prantsusmaa arvuga 58, Jaapan arvuga 50ja Venemaa arvuga 32 reaktorit. Tänapäeval kasutatavate tuumaelektrijaamade võimsus ulatub 40 megavatist üle 1 gigavatti. Tuumaelektrijaamade eelisteks on see, et tekib vähe tahkeid jääkaineid, kulub vähe kütust ja ei pruugi saastada õhku. Jaamadega kaasnevad ka ohud. Suurtemateks ohtudeks on jääkained, mis on radioaktiivsed ja mis lagunevad pikkade aastate vältel. Sõja olukorras on tuumaelektrijaamad suureks sihtmärgiks just selle hävimise tagajärjel tekkiva katastroofi tõttu.

Füüsika
20 allalaadimist
thumbnail
3
doc

Energiamajandus

Industrialiseerumise käigus hakati ehitama tuulikuid ja vesiveskeid. Tööstuse laienedes kasvas nõudlus puidu ja puusöe järele, mis viis metsade raiumiseni. Puidunappuse tõttu võeti 17. saj. kasutusele kivisüsi. Jne... Kaasaegne energiamajandus Peamiselt 5 energiaallikat. Nafta ja naftasaadused annavad 40% kogu energiavajadusest. Kivisöe osatähtsus on pidevalt vähenenud, kuid arengumaades on see ikka kõige olulisem energiaallikas. Vee- ja tuumaenergia annavad kokku kümnendiku vajaminevast energiast. Viimastel aastakümnetel on üha enam kasutama hakatud alternatiivseid energialiike. NAFTA- JA GAASITÖÖSTUS Regioonide naftatööstus Ligi 2/3 maailma naftavarudest paikneb Lähis-Ida riikides. Ladina-Ameerikas Mehhiko ja Venezuela. Ida- ja Kagu-Aasias Hiina ja Indoneesia. Euroopas Venemaa, Norra ja Suurbritannia. Põhja-Ameerikas USA ja Kanada. Kõige odavam on transportida torujuhtmetes. Maagaasi tootmine

Geograafia
82 allalaadimist
thumbnail
13
doc

Ignalina tuumajaama ehitamise kohta, materjal väitluseks

kommenteeris Veskimägi. Kolmandik Ignalina uuest jaamast maksaks hinnanguliselt 1,3 miljardit eurot. Nii suur on praegu kokkulepitud tingimuste järgi Eesti osalus. Eesti Energia juht Sandor Liive kinnitas üleeile Postimehele, et Eesti seadused ei nõua tuumainvesteeringuks midagi enamat kui majandusministri ja ettevõtte nõukogu luba. «Kellega nemad konsulteerivad, on nende asi,» lausus Liive. Selle aasta märtsis deklareerisid Balti peaministrid soovi rajada ühiselt uus tuumajaam. Pärast seda puhkenud tormis tunnistasid Eesti parlamendierakondade esindajad, et neil pole midagi tuumaenergeetika arendamise vastu. Tuumajaama võimalikkuse uuringu järgi osutus Ignalina tuumaprojekti nõrgimaks lüliks Leedu, kes peab alles looma teovõimelise energiaettevõtte. Kolm sõpra ­ Leedu, Läti ja Eesti ­ kavandavad tuumajaama ehitamist nagu dzunglist aarete otsimist, millest saadavasse kasusse võib üksnes uskuda. Majandusministeerium ja Eesti

Väitlus
30 allalaadimist
thumbnail
6
doc

Energiamajandus

Euroopas toodetakse suurem osa vee-energiast Skandinaaviamaades, Islandil, Alpi riikides ja Venemaal. Elektrienergiat ekspordivad, sedagi kaudselt, Norra ja Island. 5.Tuumaenegia Tuumaelektrijaamades on võimalik toota elektrienergiat suures koguses. Tuumaenergiast saadud elekter on söest toodetust isegi odavam. Tuumaelektrijaamas kasutatakse kütusena uraani, mille varusid arvatakse jätkuvat umbes viiekümneks aastaks. Rikkalikumad uraanileiukohad on Kanadas, USA-s ja LAV-s. tuumaelektrijaamade rajamine on jõukohane rikastele kõrgelt arenenud riikidele, sest kõrgtehnoloogial põhinev tootmine nõuab väga suuri kapitalimahutusi. Kolm suurriiki ­ SA, Prantsusmaa ja Jaapan toodavad 3/5 maailma tuumaenergiast. Tuumaelektrijaamad on ohtlikud ja riigid, kel on teisi energiaallikaid, ei ole neist eriti huvitanud. Energiavaesed riigid nagu Jaapan, Lõuna-Koera ja Prantsusmaa kasutavad tuumaenergiat palju. Tuumaelektrijaamades ei teki fosfori-, lämmastiku- eha süsihappegaasisaastet

Geograafia
65 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun