Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Näiteid ülesannetest kus on juurvõrrandid (0)

1 Hindamata
Punktid

Lõik failist

Näiteid ülesannetest kus on juurvõrrandid #1 Näiteid ülesannetest kus on juurvõrrandid #2
Punktid 100 punkti Autor soovib selle materjali allalaadimise eest saada 100 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2013-10-30 Kuupäev, millal dokument üles laeti
Allalaadimisi 15 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor AnnaAbi Õppematerjali autor
Palju näidisülesnadeid

Sarnased õppematerjalid

thumbnail
4
doc

Võrrandid ja võrrandisüsteemid

Võrrandid x - 3 1) 2 x (3 x - 2) - 31 - ( 2 - x )(2 x + 3) - = 13( 5) 2 2 x - 7 3x + 1 x +6 2) x + - =5- ( 3) 2 5 2 3x - 4 x + 1 x +2 3) 2 x - 1 - = - 1 - ( 2 ) 2 3 2 2x -1 2x +1 8 4) = + (1) 2 x +1 2 x -1 1 - 4x 2 96 2 x - 1 3x - 1 5)5 + 2 = - ( 8) x - 16 x+4 4-x 10 x - 23 5 3 2 6) 3 - + = 0 3 2 x - 5 x - 5 x + 2 2( x + 1) - 7 x x + 1 2 2 3 7) 1

Matemaatika
thumbnail
129
pdf

Juhuslikud sündmused

1. 1. N n . , m k . N = 20, n = 5, m = 4, k = 2. . . C nk C Nm--nk C 52 C152 5!15!4!16! 5 4 3 15 14 4 P ( A) = = = = = 0,217 . CN m C 204 2!3!2!13!20! 2 20 19 18 17 2. n , k . , m . n = 10, k = 4, m = 2. . . C km C 42 4!2!8! 43 2 P ( A) = m = 2 = = = = 0,133 . Cn C10 2!2!10! 10 9 15 3. . 15% , ­ 25%, ­ 30%. , ( ) . . : A1 ­ ; A2 ­ ; A3 ­ . , ( ) P ( A) = P ( A1 A2 A3 + A1 A2 A3 + A1 A2 A3 ) = = P( A1 A2 A3 ) + P( A1 A2 A3 ) + P ( A1 A2 A3 ) = = P ( A1 ) P ( A2 ) P ( A3 ) + P ( A1 ) P ( A2 ) P ( A3 ) + P ( A1 ) P ( A2 ) P ( A3 ) = = 0,85 0,75 0,3 +

Tõenäosusteooria ja matemaatiline statistika
thumbnail
100
pdf

MATEMAATIKA TÄIENDUSÕPE

. 17 3.5 Hulkliikme lahutamine teguriteks …………………………………... 17 3.6 Näited algebraliste avaldiste teisendamisest ………………………… 18 3.7 Lineaarvõrrand ……………………………………………………… 22 3.8 Ruutvõrrand ……………………………………………………...… 23 3.9 Ruutkolmliikme teguriteks lahutamine …………………………….. 23 3.10 Näiteid lineaarvõrrandite ja ruutvõrrandite lahendamisest ning ruutkolmliikmete teguriteks lahutamisest ……………………..….… 24 3.11 Determinandid …………………………………………………..….. 27 3.12 Lineaarvõrrandisüsteem ……………………………………….….… 27 3.13 Näited lineaarvõrrandisüsteemide lahendamisest ……………..……. 28 3.14 Võrratus ………………………………………………………...…… 31 3

Matemaatika
thumbnail
5
doc

Matemaatika kordamine 2 9.klass

Kordamine II 5 x + 6 12 - x x 33. - = Lahenda võrrandid ja tee kontroll 9 6 2 1. 5 - 2( 3x +1) = 3( 2 - 3x ) + 6 Lahenda võrrandisüsteem 2. ( x + 3) - 2 x = ( x - 2 )( x + 2 ) + 1 2 3. ( 2 y - 3) + 4 = ( 2 y - 3)( 2 y + 1) 2 ( x + 2) 2 - ( y + x ) = ( x + 1)( x - 1) + 13 34. 4. ( x - 2 ) 2 + ( 3 x -1)( x + 3) = ( 2 x -1)( 2 x + 1) + 6 ( x + 3)( x - 2) - ( x - y )( x + y ) = ( y + 1) 2 - 9 5. 12 x 2 - ( 3 x +1) 2 = ( 3 x - 2 )( x +1) - 6 6. ( 2 x -1) 2 + x = x( x - 3) +13 ( u - 1) 2 + 3v = ( u -

Matemaatika
thumbnail
28
doc

Ruutvõrrandi abil lahenduvaid ülesandeid

Ruutvõrrandi abil lahenduvaid ülesandeid Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kog

Algebra I
thumbnail
28
doc

Ruutvõrrandi abil lahenduvaid ülesandeid

Ruutvõrrandi abil lahenduvaid ülesandeid Ülesannete lahendused pärinevad õpikust "Matemaatika IX klassile"(koost. Tõnu Tõnso ,Tln., 1998), lk-74-78 (ül.269-391) ja kogumikust "Matemaatika kirjaliku eksami ülesanded IX klassile"* (koost. Enn Nurk ja Valvo Paat, Tln., 1996). * ülesanded tähistatud E-tähega. Paljude tekstülesannete lahendamisel jõuame ruutvõrrandini, millel on tavaliselt 2 lahendit. Olenevalt ülesande sisust võib aga ülesande vastuseks sobida ainult üks lahend. Tekstülesannete puhul tuleb võrrandi lahendeid kontrollida ülesande teksti, mitte koostatud võrrandi järgi. Tekstülesande lahendamine võrrandi abil koosneb kolmest etapist: 1. võrrandi koostamine teksti järgi; 2. koostatud võrrandi lahendamine; 3. võrrandi lahendite kontroll teksti järgi, lõplik lahendite leidmine ja vastuse kirjutamine. Mõningaid näpunäiteid võrrandi koostamiseks. Põhinõue - loe teksti ülima tähelepanuga, sest tekstis on kog

Matemaatika
thumbnail
57
rtf

Maatriksid

1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): [ ] a = aij A = (aij ) = ij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus). 3 -

Matemaatika
thumbnail
48
doc

Lineaaralgebra täielik konspekt

Lineaaralgebra elemendid. M.Latõnina 1. MAATRIKSID 1.1. Üldmõisted Definitsioon 1. Maatriksiks nimetatakse riskülikujulist arvuliste elementidega tabelit, mis sisaldab n rida ja m veergu : Lühidalt maatriksit võib tähistada erinevate sulgudega (või kahekordsete püstjoontega): A = (aij ) = [aij ] = aij , (1.1) kus i = 1,...,n on rea number, j = 1,...,m on veeru number. Arve aij nimetatakse maatriksi elementideks. Nii et esimene alumine indeks näitab, mitmendas reas asub element , ja teine alumine indeks - mitmendas veerus asub element. Maatriksi suurust saab väljendada valemiga: ridade arv x veergude arv. Antud maatriks (1.1) on suurusega n x m ja seda saab kirjutada järgmiselt : An x m või dim A = n x m (dimensioon ­ suurus).

Kõrgem matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun