Teooria eksami probleemid I osa Tõenäosusteooria 1. Defineerige sündmuste algebra. Tooge vähemalt 2 sündmuste algebra mittetriviaalset näidet Klassi F0 nimetatakse sündmuste algebraks, kui: 1) ∅,Ω ∈ F0 (Ω < ∞; Ω – elementaarsündmuste ruum ehk hulk, mille elementideks on juhusliku katse kõikvõimalikud tulemused) 2) A ∈ F0 => Ā ∈ F0 3) A,B ∈ F0 => A + B ∈ F0 Nt: Ω = {1,2,3,4,5,6} a. F = {∅,Ω} b. A = {2,3,5}; F = {∅,Ω,A,Ā} c. F = {∅,Ω,{2,4,5},{5},{1,3,6},{1,2,3,4,6},{1,3,5,6}, {2,4}} 2. Tõenäosuse aksiomaatiline definitsioon. Tõestada aksioomide põhjal, et tühja hulga tõenäosus on null. Tuletada liitmislause 2 sündmuse (liidetava) puhul Kujutist P: F → [0;1] nimetatakse tõenäosuseks, kui: 1) P(Ω) = 1 2) AB = ∅ => P
1. Üldkogum – ehk populatsiooni all mõeldakse kõiki juhtumeid või situatsioone, mille kohta uurijad soovivad, et nende poolt saadud järeldused või prognoosid kehtiksid. Valim – liikmed tuleb valida juhuslikult, st igal üldkogumi liikmel peab olema võrdne võimalus saada valitud valimisse. Valimimaht – Valimisse valitavate objektide arv. Tunnuste- all mõistetakse liikmeid kirjeldavaid erinevaid omadusi. 2. Statistilise uurimistöö etapid. Mingi probleemi statistilise uurimisel läbitakse 4 tööetappi: Uuringu ettevalmistamine Statistiline vaatlus või eksperiment Vaatlusandmete kokkuvõtte ja esialgne töötlemine Andmete analüüs, järelduste ja üldistuste sõnastamine. 3. Statistlise vaatluse vead. Eristatakse vaatlusmeetodist tulenevaid metodoloogilisi vigu ja registreerimisvigu. Metodoloogilised nt : valimivaatlusel esinevad representatiivsusvead – valim ei kirjelda üldkogumit adekvaatselt. Vaa
Standardhälve: = 2 Haare on suurima ja vähima väärtuse vahe. 2. Sündmus ja tõenäosus. Kindel sündmus ja võimatu sündmus. Sündmus on tõenäosusteooria põhimõiste. Tavaliselt tähistatakse suurte tähtedega, vajadusel kasutatakse indekseid. Nt A, A1 , Bi , Cjk jne. Sündmuse tõenäosus on sündmuse võimalikkust näitav arv lõigul [0,1], mida tavaliselt tähistatakse P. Võimatu sündmuse V tõenäosus P(V)=0, kindla sündmuse K tõenäosus P(K)=1. Ülejäänud sündmused on juhuslikud sündmused. 3. Tehted sündmustega: vastandsündmus, sündmuste summa, sündmuste korrutis, sündmuste vahe. Esitada definitsioonid ja osata tuua näiteid. Sündmuse A vastandsündmus A on sündmus, mis toimub siis, kui A ei toimu. P(A)+P( A )=1. Sündmuste A ja B summa A+B on sündmus, mis toimub siis, kui toimub A või toimub B või toimuvad A ja B korraga. P(A+B)=P(A)+P(B)-P(AB) Sündmuste A ja B korrutis AB on sündmus, mis toimub siis, kui toimuvad A ja B korraga. P(AB)=P(A)P(B/A)=P(B)P(A/B)
Teooria eksami probleemid I osa Tõenäosusteooria 1. TT ja MatStat kui üksteise pöördteadused. Tõenäosusteooria on matemaatika osa, mis uurib juhuslike nähtuste üldisi seaduspärasusi sõltumatult nende nähtuste konkreetsetsest sisust ja annab meetodid nendele nähtustele mõjuvate juhuslike mõjude kvantitatiivseks hindamiseks. Juhuslikkusel põhinev lähenemine nõuab erilisi meetodeid, mida võimaldab tõenäosusteooria. Matemaatiline statistika on matemaatika osa, mis uurib statistiliste andmete kogumise, süstematiseerimise, töötlemise ja statistiliste järelduste tegemise meetodeid. Matemaatilise statistika eesmärgiks on statistiliste seaduspärasuste avastamine ja kirjeldamine. 2. Defineerige sündmuste algebra. Tooge vähemalt 2 sündmuste algebra mittetriviaalset näidet Sündmuste algebra koos tema määratud tõenäosusmõõduga moodustavad tõenäosusruumi. Mõnikord on kasulik sünd
3, 5}.Siin sündmuseks A on valge kuuli valimise tõenäosus vaid P(C) Leida tõenäosus, et märklauda tabatakse paarituarvulise tahu pealetulek. Näiteks, = P(CP(B)) = P(CA B) P(valge) = 1/3 vähemalt üks kord.Lahendus. Olgu A = 1. Juhul kui tuleb paarisarvuline = 0,333 ehk 33,3%. Sõltuvad sündmus A märklaua tabamine esimesel tahk, siis see on antud sündmuse juhuslikud sündmused on üksteisest lasul ja sündmus B olgu märklaua vastandsündmus, tähistatakse AC, näiteks sõltivad. Näide11. Viskame kahte tabamine teisel lasul. Seega ülesande AC = 2.Elementaarsündmuste täringud. Tähistame E1 sündmus,et tingimuste kohaselt P(A) = 0,6 ja P(B)= ruum = {S, SC}.Näide 3. Kui katseks saadav punktisummaon 6 ja sündmus 0,8.Kuna sündmused A ja B on
P(A)= 1. Kindel sündmus, võimatu sündmus, juhuslik sündmus; nende tõenäosus. Kindel sündmus (K) - sündmus, mis teatud tingimuste korral alati toimub. P(K) = 1. Võimatu sündmus (V) - sündmus, mis antud vaatluse või katse korral kunagi ei toimu. P(V) = 0 Juhuslik sündmus - sündmus, mis antud vaatluse või katse korral võib toimuda, aga võib ka mitte toimuda. 2. Teineteist välistavate sündmuste summa, korrutis ja vahe. Sündmuste A ja B summaks elementaarsündmuste hulgas nimetatakse sündmust, mis toimub parajasti siis, kui toimub kas sündmus A või sündmus B või mõlemad. Sündmuste A ja B summat tähistatakse sümboliga A U B. N 1. Olgu täringu viskel sündmus A = {1, 3, 5} ja sündmus B = {1, 2, 3}, siis A U B = A + B = {1, 2, 3, 5}. Sündmuste A ja B korrutiseks elementaarsündmuste hulgas nimetatakse sündmust, mis toimub parajasti siis, kui toimuvad üheaegselt nii sündmus A kui ka sündmus B. Sündmuste A ja B korrutist tähistatakse sümboliga A B. N 2. Olg
TÕENÄOSUS SÜNDMUSED Tõenäosusteooria uurib esinevate juhuslike nähtuste seaduspärasusi Meie käsitluse aluseks on katse. Katse seisneb teatud tingimuste realiseeerumises ning selle käigus jälgitakse sündmuste toimumisi. Sündmus võib olla kindel, võimatu või juhuslik. Kindel sündmus (tähistatakse K) sündmus, mis teatud tingimuste korral alati toimub. Kindlateks sündmusteks on kooliaasta algus 1. septembril, igahommikune päikesetõus, vesi on ämbris vedelas olekus kui temperatuur on 10 kraadi. . Võimatu sündmus (tähistatakse V) sündmus, mis antud vaatluse või katse korral kunagi ei toimu. Võimatuteks sündmusteks on näiteks täringul üheaegselt 6 ja 4 silma heitmine; vesi ei saa tahkes olekus olla, kui temperatuur on +10 kraadi. Kindla sündmuse vastandsündmus on võimatu sündmus. Juhuslik sündmus sündmus, mis antud vaatluse või katse korral võib toimuda, aga võib ka mitte toimuda. Juhuslikeks sünd
Kombinatoorika valemeid ja mõisteid · Variatsioonideks n erinevast elemendist k kaupa nimetame ühendeid, mis sisaldavad k elementi antud n elemendist ning erinevad kas elementide või nende järjestuse poolest. Erinevaid variatsioone on A =n(n-1) ...(n-k+1)=n!/(n-k)! · Permutatsioonideks n elemendilisest hulgast nimetame ühendeid, mis sisaldavad kõiki n elementi (üks kord) ja erinevad järjestuse poolest. Erinevaid permutatsioone on Pn=n (n-1) ...1 = n! · Kombinatsioonideks n elemendist k kaupa nimetame ühendeid, mis sisaldavad k elementi (antud n elemendi hulgast) ja erinevad vähemalt ühe elemendi poolest. n! · Erinevaid kombinatsioone on C =A /Pk C nk = ( n - k )!k! Tõenäosusteooria · Sündmuste hulka, kus alati üks sündmus toimub ja see välistab teiste toimumise nimetame sündmuste täissüst
Kõik kommentaarid