Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

NEWTONI RÕNGAD (0)

3 KEHV
Punktid

Lõik failist

Tallinna Tehnikaülikool

Füüsikainstituut

Üliõpilane: Natalia Novak
Teostatud:
Õpperühm: YAMB31
Kaitstud:
Töö nr. 14
OT

NEWTONI RÕNGAD

Töö eesmärk:
Tasakumera läätse kõverusraadiuse määramine.
Töövahendid:
Mõõtemikroskoop, suure kõverusraadiusega tasakumer lääts, monokromaatiline valgusallikas .
Skeem
  • Töö teoreetilised alused
    Klassikaliseks näiteks koherentsete valguslainete ja nende abil püsiva interferentsipildi tekitamise kohta on nn Newtoni rõngad. Need tekivad interferentsi tulemusena tasaparalleelsest klaasplaadist ja suure kõverusraadiusega tasakumerast läätsest koosnevas süsteemis.
    Mida suurema kõverusraadiusega lääts, seda ulatuslikum on see üliõhuke kiht. Juhtides läätsele monokromaatilise valguse, näeme kokkupuutepunkti ümbruses vaheldumisi tumedaid ja heledaid kontsentrilisi rõngaid. Neid nimetatakse Newtoni rõngasteks.
    Arvestades, et suure kõverusraadiusega läätse korral peegeldub valgus punktist B ja C praktiliselt samas suunas tagasi, võime õhukihi ülemiselt ja alumiselt pinnalt peegeldunud kiirte optilise käiguvahe ∆ avaldada järgmiselt: 2 2 BC λ0 ∆ = n + , kus λ0 on valguse lainepikkus vaakumis ja n – õhu murdumisnäitaja . 2 λ0 lisandub seetõttu, et peegeldumisel klaasplaadilt kui õhust optiliselt tihedamalt keskkonnalt muutub laine faas 180o võrra, mis on samaväärne käiguvahe muutumisega poole lainepikkuse võrra punktis C.
    Kui tähistada õhukihi paksus punktide B ja C vahel d -ga ja arvestada, et õhu murdumisnäitaja n ≈1 , siis saab käiguvahe avaldada kujul: 2 2 λ0 ∆ = d + .
    Valguse kustumine õhukihi ülemisel pinnal toimub kohtades, kus valguslained kohtuvad vastasfaasides. See tähendab, et kiirte käiguvahe peab olema paaritu arv poollainepikkusi: ( ) 2 2 1 2 2 λ0 λ0 ∆ = d + = k + , (1)
    kus k = ...,2,1,0 . Siit leiame õhuvahe paksuse d , mille korral valgustatus on minimaalne: 2 λ0 d = k . (2) Maksimumid on jälgitavad
  • Vasakule Paremale
    NEWTONI RÕNGAD #1 NEWTONI RÕNGAD #2 NEWTONI RÕNGAD #3 NEWTONI RÕNGAD #4 NEWTONI RÕNGAD #5 NEWTONI RÕNGAD #6 NEWTONI RÕNGAD #7
    Punktid 100 punkti Autor soovib selle materjali allalaadimise eest saada 100 punkti.
    Leheküljed ~ 7 lehte Lehekülgede arv dokumendis
    Aeg2015-11-18 Kuupäev, millal dokument üles laeti
    Allalaadimisi 147 laadimist Kokku alla laetud
    Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
    Autor Natalia_N Õppematerjali autor
    NEWTONI RÕNGAD, täielik protokoll, ervestatud ja kaitstud
    Arvutused koos veeaarvutustega
    Graafik

    Sarnased õppematerjalid

    thumbnail
    5
    doc

    Nimetu

    Tallinna Tervishoiu Kõrgkool Optomeetria õppetool OP1 Üliõpilane: Anni Vanemb Teostatud: Rühm: OP1 Kaitstud: Töö nr: 7 TO: Newtoni Rõngad Töövahendid: Mõõtemikroskoop, suure Töö eesmärk: Tasakumera läätse kõverusraadiusega tasakumerlääts, kõverusraadiuse määramine monokromaatiline valgusallikas. Joonised 1. TÖÖ TEOREETILISED ALUSED Klassikaliseks näiteks koherentsete valguslainete ja nende abil püsiva interferentspildi tekitamise kohta on nn

    Kategoriseerimata
    thumbnail
    16
    pdf

    DIFRAKTSIOONIVÕRE

    TALLINNA TEHNIKAÜLIKOOL, FÜÜSIKAINSTITUUT 19. DIFRAKTSIOONIVÕRE 1. Töö eesmärk Valguslaine pikkuse, difraktsioonivõre nurkdispersiooni ja lahutusvõime määramine. 2. Töövahendid Goniomeeter, difraktsioonivõre, spektraallamp. 3. Töö teoreetilised alused Valguslainete levimist tõkete taha homogeenses isotroopses keskkonnas nimetatakse valguse difraktsiooniks. Difraktsiooni tõttu satub valgus geomeetrilise varju piirkonda. Difrageerunud valguse edasisel levimisel täheldatakse interferentsi, mille tulemusena valguse intensiivsus on erinevates ruumipunktides erinev. Intensiivsuse jaotuse ava või tõkke taga määrab valguse lainepikkus ja ava või tõkke kuju ning suurus, samuti vaatluskoha kaugus avast või tõkkest. Antud töös tekitatakse difraktsioonipilt korrapärase (perioodilise) pilude süsteemi, nn difraktsioonvõre abil, milles maksimumid on märgatavalt intensiivsemad ja kitsamad kui ühe pilu k

    Füüsika
    thumbnail
    83
    doc

    Kordamisküsimused: Elektriväli ja magnetväli.

    Suurust, mille võrra erinevad samasse punkti saabuvate lainete poolt läbitud teepikkused, nimetatakse lainete käiguvaheks . Käiguvahe. Nagu võnkumistegi korral, vastab maksimumile laine, mille amplituud on võrdne liidetavate lainete amplituudide summaga, miinimumile aga amplituudide vahe. Ülejäänud punktides on laine amplituud nende kahe äärmuse vahel. 17. Valgus: geomeetriline optika ja fotomeetria. 1)Valgus: Huygensi lained, Newtoni korpusklid ja Maxwelli elektromagnetvõnkumised. 2)Suurused: langemisnurk, peegeldumisnurk, murdumisnurk, fookusekaugus. 3)Kujutise konstrueerimine õhukeses läätses. 4)Fotomeetria: energeetilised ja fotomeetrilised suurused, nende SI-ühikud. Huygens'i printsiip: Laine levimisel on iga lainefrondi punkt laineallikaks; lainefrondi mistahes järgneval ajamomendil saame leida neist punktidest väljuvate keralainete mähispinnana. Huygens'i printsiip: lainefrondi A kõigist punktidest

    Füüsika
    thumbnail
    83
    doc

    Füüsika eksami küsimuste vastused

    Suurust, mille võrra erinevad samasse punkti saabuvate lainete poolt läbitud teepikkused, nimetatakse lainete käiguvaheks . Käiguvahe. Nagu võnkumistegi korral, vastab maksimumile laine, mille amplituud on võrdne liidetavate lainete amplituudide summaga, miinimumile aga amplituudide vahe. Ülejäänud punktides on laine amplituud nende kahe äärmuse vahel. 17. Valgus: geomeetriline optika ja fotomeetria. 1)Valgus: Huygensi lained, Newtoni korpusklid ja Maxwelli elektromagnetvõnkumised. 2)Suurused: langemisnurk, peegeldumisnurk, murdumisnurk, fookusekaugus. 3)Kujutise konstrueerimine õhukeses läätses. 4)Fotomeetria: energeetilised ja fotomeetrilised suurused, nende SI-ühikud. Huygens'i printsiip: Laine levimisel on iga lainefrondi punkt laineallikaks; lainefrondi mistahes järgneval ajamomendil saame leida neist punktidest väljuvate keralainete mähispinnana. Huygens'i printsiip: lainefrondi A kõigist punktidest

    Füüsika
    thumbnail
    109
    doc

    Füüsikaline maailmapilt

    ......9 4.4. Termodünaamika II printsiip................................................................................ 9 4.5. Teisi jäävusi ja printsiipe....................................................................................10 5. Liikumine, selle põhjused ja tagajärjed.................................................................... 11 5.1. Liikumise kirjeldamine ...................................................................................... 11 5.2. Newtoni seadused............................................................................................... 13 5.3. Jõudude liigid......................................................................................................14 5.4.Töö, võimsus, energia, impulss, ..........................................................................19 5.5. Energiamuundumised......................................................................................... 23 6

    Füüsikaline maailmapilt
    thumbnail
    138
    docx

    GEODEESIA II eksami vastused

    Geodeesia eksamiteemad kevad 2013 1. Geodeesia mõiste ja tegevusvaldkond, seosed teiste erialadega Geodeesia on teadus Maa ning selle pinna osade kuju ja suuruse määramisest, seejuures kasutatavatest mõõtmismeetoditest, mõõtmistulemuste matemaatilisest töötlemisest ning maapinnaosade mõõtkavalisest kujutamisest digiaalselt või paberkandjal kaartide, plaanide ja profiilidena. Geodeesia on teadusharu, mis vaatluste ja mõõtmiste tulemusena määrab terve maakera kuju ja suuruse, objektide täpsed asukohad, aga ka raskusjõu väärtused ja selle muutused ajas. Samuti ka objektide koordineerimine ja nende omavaheliste seoste kujutamine, seda just topograafiliste kaartide abiga. Objektide asukohtade väljakandmine loodusesse. TEGEVUSVALDKONNAD: Kõrgem geodeesia ­ Maa tervikuna, kuju ja suurus; insenerigeodeesia ­ geodeetilised tööd rajatiste projekteerimiseks, alusplaanid, ka maa-alused kommunikatsioonid, kaevandused, erinevad trassid; topograafia

    Geodeesia
    thumbnail
    65
    pdf

    Mõõtmestamine ja tolereerimine

    MÕÕTMESTAMINE JA TOLEREERIMINE 2 ×16 tundi Teema Kestvus h 1. Sissejuhatus. Seosed teiste aladega 2 Mõisted ja terminiloogia. GPS standardite maatriksmudel 2. Geometrilised omadused. Mõõtmestamise 2 üldprintsiibid. Ümbrikunõue, maksimaalse materjali tingimus 3. ISO istude süsteem. Tolerantsiväljad 2 4. Istud. Võlli ja avasüsteem 2 5. Soovitatavad istud. Istude rahvuslikud süsteemid 2 6. Istude kujundamise põhimõtted 2 Istude analüüs ja süntees 7. Liistliidete tolerantsid. 2 Üldtolerantsid 8. Geomeetrilised hälbed. Kujuhälbed. 2 Suunahälbed 9. Viskumise hälbed. Asetsemise hälbed. Lähted 2 Nurkade ja koonuste hälbed ja tolerantsid 10. Pinnahälb

    Mõõtmestamineja tolereerimine
    thumbnail
    151
    pdf

    PM Loengud

    V.Jaaniso Pinnasemehaanika 1. SISSEJUHATUS Kõik ehitised on ühel või teisel viisil seotud pinnasega. Need kas toetuvad pinnasele vundamendi kaudu, toetavad pinnast (tugiseinad), on rajatud pinnasesse (süvendid, tunnelid) või ehitatud pinnasest (tammid, paisud) (joonis 1.1). a) b) c) d) J o o n is 1 .1 P in n a s e g a s e o tu d e h i tis e d v õ i n e n d e o s a d .a ) p i n n a s e le t o e t u v a d ( m a d a l - j a v a iv u n d a m e n t) b ) p i n n a s t t o e t a v a d ( t u g is e in a d ) c ) p in n a s e s s e r a j a tu d ( tu n n e li d , s ü v e n d i d d ) p in n a s e s t r a j a tu d ( ta m m i d , p a is u d ) Ehitiste koormuste ja muude mõjurite tõttu pinnase pingeseisund muutub, pinnas deformeerub ja võib puruneda nagu kõik teisedki materjalid. See põhjustab

    Pinnasemehaanika, geotehnika




    Meedia

    Kommentaarid (0)

    Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



    Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun