Hulgad Millest hulk koosneb? Hulk koosneb hulagelementidest. Kuidas hulka tavaliselt tähistatakse? Hulka tähistatakse tavaliselt suurtähtedega näiteks A,B,C,D... . Millised hulga esitusviisid on olemas? Hulka võib esitada tema elementide täieliku loeteluna looksulgude vahel nt {a,b,c,d} või {a,b,c,d} Hulka võib esitada tema elementide osalise loeteluna, mis esitab mingit rehulaarselt äratuntavat seaduspärastust nt {0,1,2,3,4......} Hulka võib esitada üldise avaldise kaudu, mis kehtib kõigi hulgaelementide jaoks. Millal on hulgad teineteisega võrdsed? Hulgad on võrdsed, kui nad koosnevad samadest elementidest. Nt {1,3,5}={5,1,3} Kui palju võib ühte hulgaelementi hulgas sisalduda? Hulgas ei eksisteeri korduvaid elemente, iga elementi on hulgas üks eksemplaar. Milliste sümbolitega tähistatakse elemendi hulka kuulimist või mittekuulumist? No see eurosümbol on kuulumise märk ja mittekuulumise märk on sama, aint maha kriipsutatud. Millal on mingi hulk teise hul
Seosed Seoseks (ehk vastavuseks, sageli ka relatsiooniks või suhteks) hulkade ja vahel nimetatakse otsekorrutise × mistahes osahulka. Seega, seos hulkade ja vahel on järjestatud paaride (,) hulk, kus ja . Teisiti öeldes, seos on mingi osahulk ×. Paari (,)× korral öeldakse, et elemendid ja on seoses ning tähistatakse ka . Mõnikord öeldakse osahulga kohta, et see on seose graafik. Kui =, ehk kui ×, siis räägitakse seosest hulgal . Näide 1. Olgu ={2,3} ja ={1,2,3,4,5,6}. Siis 1={(2,2),(2,3),(3,1), (3,5)} on binaarne seos hulkade ja vahel. Samade hulkade ja korral võime vaadelda veel palju teisi seoseid, näiteks seost 2, mis on antud tingimusega, et see koosneb paaridest (,), millede korral jagub arvuga . Siis 2={(2,2),(2,4),(2,6),(3,3),(3,6)}. Näide 2. Olgu hulgaks kõigi naturaalarvude hulk ning seoseks osahulk hulgas ×, mis koosneb kõikidest paaridest (,), mille korral arv on arvu jagaja. Seega ={(,) ,, | }.
" 1. Antud juhul P(x, y) = ,,x < y" 2. ¬(x y , x < y) 3. x y , ¬(x < y) 4. x y , x y Leidub reaalarv x nii, et mis tahes reaalarvu y korral x y. 2. LOENG Lausearvutuse põhimõisted Loogika (kr. logiké techne mõtlemiskunst, logos sõna, mõiste, mõistus) on teadus õigest mõtlemisest, selle vormidest ja struktuuridest. Traditsioonilise loogika aluseks on mõtlemisseadused, mida kutsutakse ka loogika aksioomideks: 1. samasuse seadus 2. vasturääkivuste lubamatuse seadus 3. välistatud kolmanda seadus 4. küllaldase aluse seadus Matemaatiline loogika on loogika haru, milles loogikaprobleemide käsitlemiseks kasutatakse matemaatilisi meetodeid. Kokkulepped: Lausearvutuse lauseks võib olla igasugune lause, mille puhul saame rääkida selle sisu vastavusest tegelikkusele. Seejuures eeldame, et 1
Tingimused 1. Välistatud kolmanda seadus. Iga lause on kas tõene või väär. 2. Mittevasturääkivuse seadus. Ükski lause pole korraga tõene ja väär. Lausearvutuse valemid on parajasti need, mida saab koostada alltoodud reeglite järgi: 1. Iga lausemuutuja on lausearvutuse valem. 2. Kui F on lausearvutuse valem, siis ka F on lausearvutuse valem. 3. Kui F ja G on lausearvutuse valemid, siis ka (F&G), (FVG),(F->G) ja (F<->G) on lausearvutuse valemid. Osavalem : Kõiki antud valemi konstrueerimise käigus tekkinud valemeid nimetatakse selle valemi osavalemiteks ehk alamvalemiteks, konstrueerimise viimasel sammul kasutatud suhet aga peatehteks. Kokkulepped sulgude kohta: 1. Tehete prioriteet kõrgemast madalamani on , &, V, ->, <->. 2. Vasakassotsiatiivsus: kui mitme liikme konjuktsioonis või disjunktsioonis sooritatakse. tehteid vasakult paremale, siis võib tehete järjekorda täpsustavatest sulgudest l
Lausearvutus 1) a. Lausearvutuse lausetele esitatavad tingimused: a.i. Välistatud kolmanda seadus. Iga lause on kas tõene või väär. a.ii. Mittevasturääkivuse seadus. Ükski lause ei saa olla nii tõene kui ka väär. a.iii. Tehteid võib teostada ükskõik milliste lausetega. a.iv. Tehte tulemuseks saadud lause tõeväärtus sõltub ainult komponentlausete tõeväärtustest. 2) a. Eitus (märk ¬). Lause mittekehtimine. b. Konjunktsioon (märk &) tähendab seost ,,ja". c. Disjunktsioon (märk ) väljendab seost ,,või". Siin on kasutusel mittevälistav ,,või". d. Implikatsioon (märk ) väljendab tingimuslikku konstruktsiooni ,,kui ..., siis ...". e. Ekvivalents (märk ) tähendab matemaatikas sagedasti kasutatavat seost ,,parajasti siis, kui". f. Tehete järjekord kõrgemast madalamani ¬, &, , , . g. Def.
Diskreetse matemaatika elemendid 2013/2014 LAUSEARVUTUS. TÕESTUSED. 1. Lausearvutuse lausetele esitatavad tingimused. [1] o Välistatud kolmanda seadus. Iga lause on kas tõene või väär. o Mittevasturääkivuse seadus. Ükski lause ei saa olla nii tõene kui ka väär. o Nende nõuete põhjal kuuluvad vaadeldavate hulka ainult nii sugused laused, mis midagi väidavad, kusjuures sellel väitel on olemas ühene tõeväärtus. o . Välistatud kolmanda seaduse nõudel jäävad kõrvale kõik küsilaused ja paljud hüüdlaused, samuti kõik käsud ning mõttetud sõnaühendid. Mitte-vasturääkivuse seadus välistab mitmesugused paradoksid, näiteks „See lause siin on väär“, ja muud taolised väited, mille tõeväärtust pole võimalik üheselt määrata. o Tehte tulemuseks saadud lause tõeväärtus sõltub ainult komponentlausete tõeväärtustest. 2. Lausearvutuse tehted. Tehete järjekord. Lausearvutuse valem. [1] Tehted o Eitus (märk ¬)
Hulgateooria valemid Valemite õigsus ja põhjendatus Hulgateooria tähestiku põhisümbolid Î elemendiks olemise seos = võrdseks olemise seos Ø eituse operaator & konjunktsiooni operaator („on see ja on too“) Ú disjunktsiooni operaator („on see või on too“) É implikatsiooni operaator („kui on see, siis on too“) Û ekvivalentsi operaator („see ja too on samaväärsed“) " üldsuse kvantor („kõik“) $ olemasolu kvantor („mõni“) Hulkade tähisteks on tavaliselt mingi „klassikalise alfabeedi“ (nt kreeka või ladina tähestiku) tähemärgid Märkus. Lisaks tähistele (millel peavad olema tähendused) on meil edaspidi vaja mitmeid nn abisümboleid, nagu nt sulud, punktid, komad, semikoolonid jms Kokkulepe. Vajadusel võtame kasutusele uusi tähiseid kirjutiste tähistamiseks. Üheks sääraseks „uueks tähiseks“ on nn metapredikaat Set. Siinkohal lepime kokku, et SetH H on hulk Hulgateooria valemid • Kui p j
Teoreetiline informaatika Kordamisküsimuste vastused Eero Ringmäe 1. Hulkade spetsifitseerimine, tehted hulkadega, hulgateooria paradoksid. Hulk: Korteezh järjestatud lõplik hulk. Hulk mingi arv elemente, mille vahel on leitav seos klassifitseeritud elementide kogum. Hulk samalaadsete objektide järjestamata kogum. Hulga esitamine: elementide loeteluna A = {2;3;4} predikaadi abil A = {x | P(x)} Tühihulk on iga hulga osahulk. Iga hulk on iseenda osahulk. Hulga boleaan kõigi osahulkade hulk. H boleaan on 2H. 2H = {x | x on osahulgaks H-le}. Boleaani võimsus |2H| = 2|H| Tühja hulga boleaani võimsus on 1. Tehted: Hulkade võrdsus = A on B osahulk AND B on A osahulk. Ekvivalentsiseose definitsioon ((A => B) && (B => A)) hulgas sisaldavad samu elemente. Hulga osahulk võib võrduda hulgaga. Hulga pärisosahulk ei või võrduda. Hulkade ühend C = {x | x kuulub A &&
Kõik kommentaarid