Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Logaritmvõrratused (2)

5 VÄGA HEA
Punktid
Vasakule Paremale
Logaritmvõrratused #1 Logaritmvõrratused #2 Logaritmvõrratused #3 Logaritmvõrratused #4 Logaritmvõrratused #5 Logaritmvõrratused #6 Logaritmvõrratused #7 Logaritmvõrratused #8 Logaritmvõrratused #9 Logaritmvõrratused #10
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 10 lehte Lehekülgede arv dokumendis
Aeg2012-10-30 Kuupäev, millal dokument üles laeti
Allalaadimisi 54 laadimist Kokku alla laetud
Kommentaarid 2 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor T . Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
13
ppt

Eksponentvõrratused

Eksponentvõrratused © T. Lepikult, 2003 Eksponentvõrratuste lahendamine Eksponentvõrratuses esineb otsitav muutuja üksenes eksponentfunktsiooni astendajas. Lahendamisel y y = (1/2) x 8 y = 2x kasutatakse eksponentfunktsiooni monotonsuse omadust: ühest suurema aluse 5 korral on eksponentfunktsioon kasvav ja ühest 2 väiksema aluse korral 1 kahanev. -3 -2 -1 0 1 2 3 x Lihtsaimad eksponentvõrratused Lihtsaimad eksponentvõrratused on ax > b (1) ja ax < b. (2) Juhul kui b 0, siis on võrratus (1) täidetud iga x R korral, võrratusel (2) aga lahendid puuduvad. Lihtsaimate eksponentvõrratuste lahendamine Kui b > 0, siis sõltub lahend

Matemaatika
thumbnail
11
ppt

Logaritmid

Logaritmid järgmine slaid esitluse lõpp Logaritmi definitsioon Definitsioon Arvu x logaritmiks alusel a ( a > 0, a 1 ) nimetatakse arvu c, mille korral ac = x. Näited Arvu 25 logaritm alusel 5 on 2, kuna 52 = 25 Arvu 0,125 logaritm alusel 2 on -3, kuna 2-3 = 1/8 = 0,125 Logaritmi leidmist nimetatakse logaritmimiseks. Arvu x (logaritmitava) logaritmi alusel a märgitakse sümboliga loga x . Näited logaritm log 3 81 = 4 log1/ 2 1024 = -10 alus logaritmitav algusesse eelmine slaid järgmine slaid esitluse lõpp Kümnend- ja naturaalogaritmid Logaritmi aluseks võib olla suvaline positiivne arv a 1. Kui alus a = 10, siis nimetatakse vastavat logaritmi kümnendlogaritmiks ja tähistatakse sümboliga log x (venekeelses kirjanduses lg x) . Näited log 100 = 2, sest 10 2 = 100 log 0,00001 = -5, s

Matemaatika
thumbnail
14
pdf

Võrratused

Jüri Afanasjev Tartu 2003 Juhendmaterjal on jätkuks TÜ Teaduskooli I kursusel läbitöötatud brosüürile E. Tamme "Algebraliste võrrandite lahendamisest". Vaadeldakse kõrgema astme võrratuste lahendamist intervallmeetodiga, absoluutväärtusi sisaldavaid võrratusi ja juurvõrratusi. Õppematerjali koostamisel kasutatud kirjandus: Abel, E. jt Aritmeetika ja algebra. Tartu, 1984 Gabovits, J. Võrratused. Tartu, 1970 Jürimäe, E., Velsker, K. Matemaatika käsiraamat IX - XI klassile. 2. tr. Tallinn, 1984 Litvinenko, V. N. jt Praktikum po reseniju matematitseskih zadats. Moskva, 1984 (vene keeles). 2 VÕRRATUSED Kaks algebralist avaldist, mis on omavahel seotud märkidega >, või < , moodustavad võrratuse.

Matemaatika
thumbnail
6
docx

Ruutvõrratused

2.4 RUUTVÕRRATUS Ühe muutujaga ruutvõrratuse üldkuju on ax2 + bx + c > 0, kus a 0. Märgi > asemel võib võrratuses olla ka üks märkidest <, , . Ruutvõrratuse lahendamiseks 1) lahendame ruutvõrrandi ax2 + bx + c = 0; 2) skitseerime parabooli y = ax2 + bx + c; 3) leiame jooniselt, kus funktsiooni väärtused positiivsed, kus negatiivsed. Ruutfunktsiooni y = ax2 + bx + c graafik on parabool. Kui a > 0, siis avaneb parabool ülespoole. Kui a < 0, siis avaneb parabool allapoole. Kui lahendame ruutvõrrandi ax2 + bx + c = 0, siis on kolm erinevat võimalust: A) Diskriminant D = b2 ­ 4ac > 0. Parabool lõikab sel juhul x ­ telge kahes erinevas punktis. ax2 + bx + c > 0 L = (­ ;x1) (x2; ) ax2 + bx + c >0 L = (x1; x2) 1 B) Kui diskriminant D = 0, siis on ruutvõrrandil kaks võrdset reaalarvulist lahendid ning parabool puudutab x ­

Matemaatika
thumbnail
17
ppt

Võrratused

Võrratused 10. klass Võrratus Võrratuseks nim. kaht matemaatilist avaldist, mis on seotud märkidega >,<, või . Näiteks: 5>0; 4a+2-1; 3x2-1<8. < ja > on ranged võrratusemärgid; ja on mitteranged võrratusemärgid. Võrratuse omadused Kui vahetada võrratuse pooled, muutub võrratuse märk vastupidiseks. Näiteks: Kui 3<7, siis 7>3. Võrratuse liikmeid võib viia ühelt võrratuse poolelt teisele, muutes üleviidava liikme märki. Näiteks: Kui 8>3, siis 8-3>0. Võrratuse mõlemaid pooli võib korrutada (jagada) nullist erineva arvuga. Negatiivse arvuga jagades võrratuse märk muutub! Positiivse arvuga jääb samaks. Näiteks: Kui 5<7 |·3, siis 15<21. Aga 5< 7 |·(-3), siis -15>-21. Võrratuse lahend Kui võrratus sisaldab muutujat, siis saame rääkida võrratuse lahendamisest. Võrratuse neid muutuja väärtusi, mille korral võrratus osutub tõeseks nim. võrratuse lahendeiks ja kõiki koos võrratuse lahen

Matemaatika
thumbnail
8
docx

Logaritmid

b Kui a > 1, siis võrratuse märk jääb samaks f ( x ) a , f ( x) g(x ) . Kui 0 < a < 1, siis võrratuse märk muutub vastupidiseks f ( x ) ab , f ( x) g( x ) . Tuleb meeles pidada, et logaritmitav on alati positiivne! Logaritmvõrrandi kontroll on kohustuslik. Näiteid: Lahendada võrratused 1) log 2 ( x-1 )> 5 . Logaritmi alus on 2 ( > 1), s.t. võrratuse mark säilib x-1>25 , ning logaritmitav on positiivne x-1>0 . Seega saame võrratuste süsteemi { x-1> 0 { x -1> 32 x >33 x >1 . Lahendite ühiseks osaks on x> 33 , mis ongi antud ülesande vastuseks. Vastus: x ( 33; ) . 2) log 0,5 ( 2 x+7 )>log 0,5 (3 x-4) . Logaritmi alus on 0,5 (< 1), s.t

Matemaatika
thumbnail
8
doc

VÕRRATUSED

- x < - 25 x > 25. Vastus: x (25; ). Ülesandeid Lahendada lineaarvõrratused: 2 1) 4x ­ ( 8x ­ 7 ) < 1 2) 7(2y -3) ­ 4(5y ­ 7) 1 3) 0 25 - x RUUTVÕRRATUSED. Kõrgema astme võrratused. Ruutvõrratuste lahendamiseks on mitu meetodit. Piirdume intervallide meetodiga. Intervallide meetodi algoritm: 1. Leida avaldise nullkohad (võrdsustada nulliga). Avaldist võib lahutada tegureiks. 2. Paigutada nullkohad arvsirgele. 3. Uurida avaldise märki igas saadud intervallis (igas intervallis valime suvalist arvu, asendame selle arvu ja uurime saadud märki). Intervallid omavad kas ,,+" või ,, ­ ,, märki

Matemaatika




Meedia

Kommentaarid (2)

crissy237 profiilipilt
crissy237: Aitas mind väga !
17:00 03-12-2012
Keegiteine66 profiilipilt
Keegiteine66: suht jamps
20:37 21-05-2013





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun