1) Koonda sarnased liikmed a) 2a - 5a + 8a - 7a = ................... f) 7x - 9x -2 + 3 = ................................... b) 5x + 3x + 6x - 2x = ................... g) 15x + y - 3x - 7y - 3 = ........................... c) 11y - 5y + 6y - 7y = ..................______ h) 2x - 5xy - 3y - 3x + 2xy = ...................... d) 22c - 13c + 8c - 7c = ................ i) 11 - 3a + 7b - 2a + 4b = ........................ e) 3a - 5b + 9a - 7b = ...................._____ j) 13u + 7v + 8u - 8u - 11v + 21 = ............. 1. Lahenda järgmised võrrandid: a) 5 - 4x + 9 = 2x - 10 ....................... e) 24x = 17 + 9x + 42 + 1 .................. ................................................... ................................................... ................................................... ................................................... b) 5 - 8y = - 23 + y + 1 ....................... f) 87x -
koondada. ÜLESANNE 1 KOONDA SARNASED LIIDETAVAD 1) 5a-6a+7b+b= 2) 4a-24a+15b= 3) 4(25+15a)= 4) 4(-1-5a)+30a-15b= ÜLESANNE 1: VASTUSED 1) VASTUS: 5a-6a+7b+b=-1a+8b 2) VASTUS: 4a-24a+15b=-20a+15b 3) VASTUS: 4(25+15a)=100+60a 4) VASTUS: 4(-1-5a)+30a-15b=-4+10a-15b 3.4 VÕRRANDITE SAMAVÄÄRSUS Võrrand – tundmatut sisaldav võrdus 2x – 5 = 3 ühe tundmatuga lineaarvõrrand Võrrandi lahend – arv, millega tundmatut asendades saadakse võrrandist tõene võrdus Võrrandi lahendamine – võrrandi lahendi leidmine Võrrandi lahendamisel tuleb tihti võrrandit mitmel moel teisendada (sulgude avamine, sarnaste liidetavate koondamine jm). Seejuures ei tohi võrrandi lahend muutuda. Iga uus võrrand, mis teisendamisel saadakse, peab olema antud võrrandiga samaväärne. Kahte sama tundmatuga võrrandit, millel kõik lahendid
Vaheta vrrandi pooled 3 3m-7=5+2m Vaheta vrrandi pooled 3 5x=8x-5 Jaga vrrandi pooled tundmatu kordajaga 0 7x=21 Jaga vrrandi pooled tundmatu kordajaga 0 -0,3y=-1,2 Jaga vrrandi pooled tundmatu kordajaga 0 -5n=25 Vii kik tundmatut sisaldavad liikmed vrrandi vasakule poolele ja arvud vrrandi paremale poolele ning seejrel koonda sarnased liikmed 4 3x-4=7x Vii kik tundmatut sisaldavad liikmed vrrandi vasakule poolele ja arvud vrrandi paremale poolele ning seejrel koonda sarnased liikmed 4 9-2y=5y+3 Vii kik tundmatut sisaldavad liikmed vrrandi vasakule poolele ja arvud vrrandi paremale poolele ning seejrel koonda sarnased liikmed 4 2m-3+5=2-5m+1+3m Lahenda vrrand 0 9x-15=2-8x Lahenda vrrand 0 6-5n=3n+22 Vaheta vrratuse pooled 3 8>4 Vaheta vrratuse pooled 3 -12<=8 Vaheta vrratuse pooled 3 -4x>=16 Vaheta vrratuse pooled 0 3 -8<20y Liida vrratuse mlema poolega arv 3 0 8>4 Liida vrratuse mlema poolega arv 3 0 -12<=8 Liida vrratuse mlema poolega arv 3 0 -4x>=16 Liida vrratuse m
2.4 RUUTVÕRRATUS Ühe muutujaga ruutvõrratuse üldkuju on ax2 + bx + c > 0, kus a 0. Märgi > asemel võib võrratuses olla ka üks märkidest <, , . Ruutvõrratuse lahendamiseks 1) lahendame ruutvõrrandi ax2 + bx + c = 0; 2) skitseerime parabooli y = ax2 + bx + c; 3) leiame jooniselt, kus funktsiooni väärtused positiivsed, kus negatiivsed. Ruutfunktsiooni y = ax2 + bx + c graafik on parabool. Kui a > 0, siis avaneb parabool ülespoole. Kui a < 0, siis avaneb parabool allapoole. Kui lahendame ruutvõrrandi ax2 + bx + c = 0, siis on kolm erinevat võimalust: A) Diskriminant D = b2 4ac > 0. Parabool lõikab sel juhul x telge kahes erinevas punktis. ax2 + bx + c > 0 L = ( ;x1) (x2; ) ax2 + bx + c >0 L = (x1; x2) 1 B) Kui diskriminant D = 0, siis on ruutvõrrandil kaks võrdset reaalarvulist lahendid ning parabool puudutab x
ruutude summa oleks võrdne kolmanda arvu ruuduga. (6; 8; 10 või 2; 0; 2). Ülesanne 16. Leia kolm järjestikust paaritut arvu, kui on teada, et nende arvude ruutude summa on 155. (5; 7; 9 või 9; 7; 5). Ülesanne 17. Pärast kooli lõpetamist vahetasid õpilased pilte. Kui palju oli lõpetajaid, kui on teada, et vahetati 462 pilti? (22 lõpetajat). Ülesanne 18. Maleturniiril mängis iga mängija iga osavõtjaga ühe partii. Kui palju oli turniirist osavõtjaid, kui on teada, et mängiti 240 partiid? (16 osavõtjat). 12
MATEMAATIKA KONTROLLTÖÖ: HULKLIIKMED I NIMI: …………………………………………………… 1. Koonda. 5x – 4y + 7y – 6x + 4y = 2a – 3a2 + a3 – 8a + 3a2 = 2. Lihtsusta avaldis ja arvuta selle väärtus. 1 (5x2 – 2x + 3) – (2x2 + 3x – 1), kui x = - 4 -(4y + 2) – [- (3y – 5) + 5y + 6], kui y = 3 3. Lihtsusta avaldis. -17y(5y2 – 4y + 3) = (9x4y2 – 3x2y) : (-3x2y) = (3x2y + 5x3y4 – 7x4) · (5x3y4) = (4,5x6y5 + 1,5x3y4 – x2y2) : (0,5xy) = 4 y 3 +5 y 2− y =¿ 2y 4. Lahenda võrrand. 8(3u + 4) – (4u – 1) = 43 2x(3 – 4x) = 4 – 4(2x2 – x + 1) 5. Tegurda. 6a2b – 12ab2 = -14a3b2 – 18a4b6 – 8a2b3 = 6. *Arvuta kolmnurga külgede pikkused, kui kolmnurga küljed avalduvad kujul 2n + 2; 3n – 4
4.ptk Kahe tundmatuga lineaarvõrrandisüsteem 8.klass Õpitulemused Näited 1.Kahe tundmatuga lineaarvõrrand - Ül.908 normaalkuju ax+by=c, esimese tundmatuga lineaarliige ax, teise teise | 12 tundmatuga lineaarliige by ja vabaliige c; tähed a,b ja c tähistavad arve, need on laiendajad on 12;4;2;3 võrrandi kordajad; kahe tundmatuga võrrandil on samad põhiomadused, mis 48x-4(2x-5)=2(y+2)-3(2x-3y) ühe tundmatuga võrrandil 48x-8x+20=2y+4-6x+9y 48x-8x-2y+6x-9y=4-20 NB kaks kahe tundmatuga lineaarvõrrandit 46x-11y=-16 normaalkuju moodustavad lineaarvõrrandisüsteemi 2.Kahe tundmatuga lineaarvõrrandi Ül.901 normaaalkuju - võrrand üldkujul ax+by=c 3x-5(3y-4)=-3(x-2)+6 kirjutatakse nii, et lineaarliikmed on 3x-15y+20=-3x+6+6
.......................................................................... 12 II Võrrandid ja võrratused.......................................................................................................... 12 Võrrandid................................................................................................................................12 Võrrandi samaväärsus.............................................................................................................13 Lineaarvõrrand........................................................................................................................13 Ruutvõrrand............................................................................................................................13 Viete teoreem......................................................................................................................14 Biruutvõrrand...............................................................................
Kõik kommentaarid