Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Tõenäosusülesanded II (0)

5 VÄGA HEA
Punktid

Lõik failist

Tõenäosusülesanded
II

  • Kuup tükeldatakse 27 ühesuuruseks kuubiks ( tee endale joonis) ja tükid segatakse. Leia tõenäosus, et saadud kuupide hulgast juhuslikult valitud kuubil on
  • üks tahk värvitud;
  • kaks tahku värvitud;
  • kolm tahku värvitud;
  • kuubi tahud on värvimata.
  • 11. klassi poiste seast, keda on 14, valitakse lipukandjad kolmele lipule: koolilipp, linnalipp ja riigilipp . Mitu erinevat võimalust on lippude kandmiseks?
  • Veeretatakse kahte täringut. Leia tõenäosus, et
  • täringutel tuleb sama arv silmi;
  • silmade summa on 7 või 8.
  • Karbis, milles on 3 rohelist, 2 punast ja 4 sinist pliiatsit võetakse juhuslikult 3 pliiatsit. Leia tõenäosus, et
  • kõik kolm võetud pliiatsit on erinevat värvi;
  • kaks pliiatsit on rohelised ja üks on punane;
  • kõik võetud pliiatsid on sinised;
  • vähemalt 2 võetud pliiatsit on sinised.
    Vastused
    on taandamata kujul, et Sul oleks ennast parem kontrollida:
    1.
    [6/27; 12/27; 8/27; 1/27]; 2. [2184]; 3. [6/36; 11/36]; 4. [24/84;
    6/84; 4/84; 34/84]

  • Tõenäosusülesanded II #1
    Punktid Tasuta Faili alla laadimine on tasuta
    Leheküljed ~ 1 leht Lehekülgede arv dokumendis
    Aeg2018-09-21 Kuupäev, millal dokument üles laeti
    Allalaadimisi 28 laadimist Kokku alla laetud
    Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
    Autor Kadri Liinsoo Õppematerjali autor

    Sarnased õppematerjalid

    thumbnail
    1
    docx

    Tõenäosusülesanded II

    Tõenäosusülesanded II 1. Kuup tükeldatakse 27 ühesuuruseks kuubiks ( tee endale joonis) ja tükid segatakse. Leia tõenäosus, et saadud kuupide hulgast juhuslikult valitud kuubil on a) üks tahk värvitud; b) kaks tahku värvitud; c) kolm tahku värvitud; d) kuubi tahud on värvimata. 2. 11. klassi poiste seast, keda on 14, valitakse lipukandjad kolmele lipule: koolilipp, linnalipp ja riigilipp. Mitu erinevat võimalust on lippude kandmiseks? 3. Veeretatakse kahte täringut. Leia tõenäosus, et a) täringutel tuleb sama arv silmi; b) silmade summa on 7 või 8. 4. Karbis, milles on 3 rohelist, 2 punast ja 4 sinist pliiatsit võetakse juhuslikult 3 pliiatsit. Leia tõenäosus, et a) kõik kolm võetud pliiatsit on erinevat värvi; b) kaks pliiatsit on rohelised ja üks on punane; c) kõik võetud pliiatsid on sinised; d) vähemalt 2 võetud pliiatsit on sinised. Vastused on taandamata kujul, et S

    Tõenäosusteooria
    thumbnail
    5
    doc

    Tõenäosusteooria.

    Tõenäosusteooria. 1. Õpetaja kutsub kuuest nõrgast õpilasest kolm konsultatsiooni. Õpilane, kes pidi kutse edastama, unustas nimed ja saatis neist huupi kolm konsultatsiooni. Kui tõenäone on, et juhtusid kutsutud? 2. Õpilane oskab 25-st eksamiküsimusest vastata kahekümnele. Kui suur on tõenäosus, et pileti 3 küsimust on kõik nende kahekümne seast? 3. Kui suur on tõenäosus, et täringu viskamisel tuleb a. 5 silma, b. paaritu arv silmi, c. kolmega jaguv silmade arv. 4. Urnis on 3 punast ja 9 sinist ühesugust kuuli. Kui suur on tõenäosus, et kuuli juhuslikul võtmisel urnist saadakse d. sinine kuul, e. punane kuul, f. roheline kuul, g. kas punane või sinine kuul. 5. Lapse käes on neli kaarti, millest igaühele on kirjutatud üks number 1, 2, 3, 4. Laps laob need juhuslikus järjrkorras üksteise kõrvale. Kui suur on tõenäosus, et nii tekib a. arv 213

    Tõenäosusteooria
    thumbnail
    80
    pdf

    Matemaatika õpetajaraamat 1. klassile I osa

    Matemaatika 1. klassile ÕPETAJARAAMAT I osa Kaja Belials Matemaatika 1. klassile ÕPETAJARAAMAT I osa Retsenseerinud Kalju Kaasik Toimetanud Esta Erit Keeletoimetaja Kaire Luide Kujundanud Anne Linnamägi ISBN 9985-2-0849-8 © AS BIT, 2003 Müügiesindused: TALLINN 10133, Pikk 68 tel 6 275 401, faks 6 411 340 TARTU 51003, Tiigi 6 tel/faks (07) 420 637, tel (07) 427 156 PÄRNU 80011, Kuninga 18 tel/faks (044) 42 278 JÕHVI 41532, Rakvere 30 tel/faks (033) 70 108 www.avita.ee [email protected] Lugupeetud õpetajad Käesolev õpetajaraamat püüab teile abiks olla ja nõu anda, kui ka- sutate Kaja Belialsi koostatud tööraamatut I klassile ning ülesanne- te kogumikke „Arvuta” ja „Iseseisvad tööd”. Tundide näitlikustamiseks saab kasutada õpetajaraamatu juurde kuuluvat pildikomplekti. Raamatu lk 38–40 võib paljun

    Matemaatika
    thumbnail
    62
    pdf

    Nupukas - Nuputamisülesanded

    Matemaatika nuputamisülesandeid 4. ja 5. kl õpilastele Panin siia kirja 325 ülesannet, mida võiks anda nuputamiseks 4. ja 5. kl matemaatikahuvilistele õpilastele. Olen nuputamisülesanded väga erinevatest allikatest juba mitu aastat kogunud ja olümpiaadiks ettevalmistamisel praktikas kasutanud. Praegune valik on selline. Võib-olla on need ülesanded natukene abiks ka mõnele kolleegile. On lisatud ka vastused ja üks võimalikest lahenduskäikudest. 1. Ühe staadioniringi läbimiseks kulub Sassil 3 minutit ja Reinul 4 minutit. Poisid alustasid jooksu samal ajal samalt stardijoonelt. Leia vähim aeg, mis kulub poistel, et ületada jälle samaaegselt seda stardijoont. VASTUS: 12 minutit, sest see on väikseim arv, mis jagub nii 3-ga kui ka 4- ga. 2. Mitu kolmnurka on joonisel? VASTUS: 20 3. Mari elab koos ema, isa ja vennaga. Neil on kodus üks koer, kaks kassi, kaks papagoid ja akvaariumis neli kuldkala. Mitu jalga on neil kõigil kokk

    Matemaatika
    thumbnail
    4
    docx

    Kombinatoorika kordamisülesanded

    Kombinatoorika kordamisülesanded. 1. Korvis on 4 punast ja 3 kollast õuna. Mitu erinevat võimalust on a) kahe õuna võtmiseks? b) kahe punase õuna võtmiseks? c) kolme kollase õuna võtmiseks? d) kahe erinevat värvi õuna võtmiseks? 2. Mitu erinevat lauset saab moodustada sõnadest TIHTI TÄHTI TAEVAS NÄHTI nende sõnade järjestuse muutmise teel? 3. Neli musketäri hüppavad postitõllale, kus on 6 vaba kohta. Mitmel viisil võivad nad istuda vabadele kohtadele? 4. Korvpallivõistlusel osaleb 12 võistkonda. Mitmel erineval viisil võivad jaotuda kuld-, hõbe- ja pronksmedal? 5. Korvpallivõistlusel osaleb 12 võistkonda. Neist 4 mängivad finaalturniiril. Mitu erinevat finaalgruppi võib moodustada? 6. Hulgimüügifirma "Ratsa rikkaks" võtab tööle müügijuhi, reklaamijuhi ja pankrotihalduri. Korraldati ühine konkurss, millest võttis osa 10 töösoovijat. Mitu erinevat töömääramist saab t

    Matemaatika
    thumbnail
    6
    doc

    Kombinatoorika kordamisülesanded.

    Kombinatoorika kordamisülesanded. 1. Korvis on 4 punast ja 3 kollast õuna. Mitu erinevat võimalust on a) kahe õuna võtmiseks? b) kahe punase õuna võtmiseks? c) kolme kollase õuna võtmiseks? d) kahe erinevat värvi õuna võtmiseks? 2. Mitu erinevat lauset saab moodustada sõnadest TIHTI TÄHTI TAEVAS NÄHTI nende sõnade järjrstuse muutmise teel? 3. Neli musketäri hüppavad postitõllale, kus on 6 vaba kohta. Mitmel viisil võivad nad istuda vabadele kohtadele? 4. Korvpallivõistlusel osaleb 12 võistkonda. Mitmel erineval viisil võivad jaotuda kuld-, hõbe- ja pronksmedal? 5. Korvpallivõistlusel osaleb 12 võistkonda. Neist 4 mängivad finaalturniiril. Mitu erinevat finaalgruppi võib moodustada? 6. Hulgimüügifirma “Ratsa rikkaks” võtab tööle müügijuhi, reklaamijuhi ja pankrotihalduri. Korraldati ühine konkurss, millest võttis osa 10 töösoovijat. Mitu erinevat töömääramist sa

    Matemaatika
    thumbnail
    3
    doc

    Kombinatoorika kordamisülesanded vastustega

    Kombinatoorika kordamisülesanded. 1. Korvis on 4 punast ja 3 kollast õuna. Mitu erinevat võimalust on a) kahe õuna võtmiseks? b) kahe punase õuna võtmiseks? c) kolme kollase õuna võtmiseks? d) kahe erinevat värvi õuna võtmiseks? 2. Mitu erinevat lauset saab moodustada sõnadest TIHTI TÄHTI TAEVAS NÄHTI nende sõnade järjrstuse muutmise teel? 3. Neli musketäri hüppavad postitõllale, kus on 6 vaba kohta. Mitmel viisil võivad nad istuda vabadele kohtadele? 4. Korvpallivõistlusel osaleb 12 võistkonda. Mitmel erineval viisil võivad jaotuda kuld-, hõbe- ja pronksmedal? 5. Korvpallivõistlusel osaleb 12 võistkonda. Neist 4 mängivad finaalturniiril. Mitu erinevat finaalgruppi võib moodustada? 6. Hulgimüügifirma "Ratsa rikkaks" võtab tööle müügijuhi, reklaamijuhi ja pankrotihalduri. Korraldati ühine konkurss, millest võttis osa 10 töösoovijat. Mitu erinevat töömääramist saab t

    Matemaatika
    thumbnail
    45
    pptx

    Tõenäosusteooria 11 klass

    Tõenäosusteooria 11 klass kitsas iseseisvaks õppimiseks Miina Sarv 1 Klassikaline tõenäosus 👀 Töenäosus - soodsate võimaluste arv / kõikide võimaluste arvuga P või p - tõenäosus k- soodsate võimaluste arv n- kõikide võimaluste arvuga 2 Lihtne ülesanne nr.1 Täringu veeretamisel on võimalik saada 6 tulemust 1, 2, 3, 4, 5, 6 P2 = 1/6 P2,3 = 2/6 = 1/3 P1,2,3 =3/6 = 1/2 4/6 = P 5/6 =P 6/6 =P P7 =0/6 =0 3 Tõenäosus ja sündmus 👀 SÜNDMUS KINDEL SÜNDMUS JUHUSLIK SÜNDMUS VÕIMATU SÜNDMUS P (A) = 1 P(C) = 0….1 P(B) =0 A=1 0 > C < 1 B=0 4 Sündmuste toimumise kaks erinevat võimalust 👀 Võrdvõimalikud ja juhuslikud sündmused - 6 või 4 (

    Kategoriseerimata




    Kommentaarid (0)

    Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



    Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun