Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"termotuumapommis" - 19 õppematerjali

termotuumapommis ehk vesinikpommis. Vesinukupommi südamikus on tavaline lõhustusmis- tuumapomm. Selle lõhkemisel tekib ülikõrge temperatuur, mis käivitabki termotuumareaktsiooni.
thumbnail
3
docx

Füüsika konspekt - tuumafüüsika

energiaallikad ammenduvad.Teiseks on termotuumaenergia saastevaba ,seega pole muret keskkonna saastamise,radioaktiivsete jääkide eemaldamise ja matmise üle. 13. Miks ei plahvata Päike vesinikpommina? Päike ei plahvata vesinikpommina,kuna seal puudub raske vesinik ehk deuteerium.Kerges vesinikus pole aga tuuma koostisesse kuuluvaid neutroneid,need peavad tekkima prootonitest,kuid see on raskendatud. Prootoni ja elektroni ühinemine toimub väga väikese tõenäosusega. 14.Mis on termotuumapommis kütuseks ja miks? Termotuumapommis kasutatakse kõigepealt uraanikütust,et toimuks plahvatus,millega saavutatakse kõrge temperatuur,veel kasutatakse LiD-d (liitiumdeuteriid). 15.Millistest osadest koosneb looduslik kiirgustaust? 1) Kosmiline kiirgus ­ tuleb Päikeselt päikesetuulena ja on suure energiaga.Ainult osa kiirgusest jõuab Maale, enamiku juhib Maa magnetväli kõrvale. 2)Maapinna radioaktiivne kiirgus ­ ladestunud miljardite aastatega.

Füüsika → Bioloogiline füüsika
38 allalaadimist
thumbnail
1
doc

Füüsika materjal

taseme õnnetus. Tuumaelektrijaama 4. energiaploki reaktor plahvatas. Põhjusteks olid reaktori viimine ebastabiilsesse olekusse reaktori turvasüsteemide katsetamisel ning reaktori kostruktsiooni iseärasused. Tuumapomm ehk aatomipomm (ka: aatompomm) on suure plahvatusjõuga lõhkekeha, kus energia vabaneb raskete aatomituumade lõhustumisel. Lisaks tavalisetele tuumapommidele on olemas termotuumapommid (ehk vesinikupommid), neutronpommid ja kombineeritud tuumarelvad. Termotuumapommis kasutatakse tuumalõhustumisel tekkivat energiat termotuumareaktsiooni süütamiseks. Neutronpommi puhul on tegemist väikese lõhkejõuga kombineeritud tuumapommiga, mille puhul ei kasutata neutronpeeglit, vaid pommi eesmärk ongi võimalikult suure hulga neutronite vabastamine, et tekiks surmav neutronkiirgus

Füüsika → Füüsika
4 allalaadimist
thumbnail
1
docx

Tuumafüüsika ja relatiivsusteooria - mõisted

Tuumareaktor ­ toodab plutooniumi või uraani aatomi tuuma lõhustamisel kõigepealt soojust ning siis elektrienergiat. Teised rakendused on näiteks vabade neutronite tootmine (näiteks materjalide uurimiseks) ning teatud radioaktiivsete nukliidide tootmiseks, näiteks meditsiinilisel otstarbel. Termotuumareaktsioon ­ tuumareaktsioon, kus kergemate aatomituumade tuumaühinemise tulemusel kõrge temperatuuri ja rõhu juures tekivad raskemad aatomid. Termotuumapommis ehk vesinikupommis kasutatakse tuumalõhustumisel tekkivat energiat termotuumareaktsiooni süütamiseks. Termotuuma reaktsiooni etapid päikesel: I prooton põrkab elektroniga; II põrkel tekib neutron, eraldub neutriino; III prooton ühineb neutroniga deutroniks; IV kaks deutronit põrkuvad; V tekib heeliumi tuum. Grei (Gy) ­ neeldumisdoosi mõõtühik. Grei võrdub neeldumisdoosiga, mille korral ühes kilogrammis aines neeldunud ioniseeriva kiirguse energia on üks dzaul

Füüsika → Füüsika
29 allalaadimist
thumbnail
2
doc

Neutron, prooton, elektron

7. Millal aatom kiirgab, millal neelab kvandi? -Aatom kiirgab energiat kui elektron liigub lubatud orbiitidel aatomi tuuma poole. -Aatom neelab energiat kui elektron liigub orbiitidel aatomi tuumast kaugemale. 8. Selgita termotuumareaktsioon ja kus ta esineb? Saadakse energiat kõige kergemate tuumade ühinemisel raskemateks. Kergete tuumade ühinemiseks on vaja ülikõrget temperatuuri. Sellepärast nim neid tuumareaktsioone ka termotuumareaktsioonideks. Esineb tähtede keskmes, vesiniku- ehk termotuumapommis. 9. Võrdle tuumareaktorit tuumapommiga! Tuumareaktoris ei lasta ahelreaktsioonil lõpuni minna, seda kontrollitakse tuumavarrastega. 10. Kuidas on omavahel seotud aatomimass, tuumalaeng, elektronide arv, prootonite arv, neutronite arv? Aatommassi moodustavad põhiliselt prootonid ja neutronid. Aatomituuma tuumalaeng on positiivne. Elektronide arv on võrdne prootonite arvuga. Prootonite arv määrab ära, millise keemilise elemendiga on tegu

Füüsika → Füüsika
75 allalaadimist
thumbnail
17
ppt

Tuumapommid

Tuumapommid · Tuumapomm ehk aatomipommon suure plahvatusjõuga lõhkekeha, kus energia vabaneb raskete aatomituumade lõhustumisel. · termotuumapommid · neutronpommid · kombineeritud tuumarelvad Toime · Termotuumapommis kasutatakse tuumalõhustumisel tekkivat energiat termotuumareaktsiooni süütamiseks · Neutronpommi puhul on tegemist väikese lõhkejõuga kombineeritud tuumapommiga, mille puhul ei kasutata neutronpeeglit- pommi eesmärk ongi võimalikult suure hulga neutronite vabastamine, et tekiks surmav neutronkiirgus. · Kombineeritud tuumarelvade puhul võimendatakse termotuumareaktsiooni energiat tuumalõhustumisega, mille käivitamiseks kasutatakse termotuumareaktsioonil

Füüsika → Füüsika
27 allalaadimist
thumbnail
2
doc

Tuumafüüsika konspekt

Tuumaenergia saamine ja kasutamine: 1. muundades Termotuumareakts : Deuteerium -> tritium -> heelium + radioaktiivse kiirguse energia elektri- või soojusenergiaks. 2. neutron + gammakiirgus. Tuumafüüs kasut meditsiin, energia kasutades raskete tuumade lõhustumisel vabanevat energiat. tootmine, arheoloogia, sõjandus, tuumajaam, kiirendid. Kasutusel tuumareaktorites tuumajaamades. 3. kasutades Termotuumareakts toimuvad termotuumapommis, päikesel, kergete tuumade ühinemisel vabanevat energiat. Massidefek tähtedel. on massi muutumine tuumade ühinemisel või lagunemisel. 1.Elementaa.osakesteks nim aineosakesi, mis pole jagatavad E=mc2 Massidef on küll väike, kuid sellest tekivad suured veel väiksemateks osakesteks. El.osakesed ei lagune energiahulgad(1g heeliumi tekkimisel vabaneva energiaga tükkideks, nad muunduvad üksteiseks. N: elektron, prooton,

Füüsika → Füüsika
345 allalaadimist
thumbnail
11
doc

Liitium

Li CO on anomaalselt vähelahustuv (1,3% temperatuuril 20°C juures), ühendi lahustuvus temperatuuri tõustes väheneb. LiH liitiumhüdriid. Leiab rakendamist välitingimustes H saamisel: LiH + H O LiOH + H (1 kg LiH annab 2,8 m³ vesinikku) LiD liitiumdeuteriidi kasutatakse termotuumarelvas triitiumi saamiseks. Li aatomi kiiritamisel neutronidega tekivad heeliumi ja triitiumi (T) aatomid, D ja T on termotuumapommi põhikomponendid. Neutronid ja vajalik ülikõrge temperatuur saadakse termotuumapommis (vesinikupommis) sisalduva aatomipommi lõhkamisel. Li-karbonaadi ja Li-fluoriidi kasutatakse emailide, glasuuride ja eriklaaside valmistamiseks. Fluoriidid: LiF Kloriidid: LiCl · H O, LiCl Bromiidid: LiBr Jodiidid: LiI · 3H O Hüdriidid: LiH Oksiidid: LiO , Li O, Li O Sulfiidid: Li S Seleniidid: Li Se Telluriidid: Li Te Nitriidid: Li N 6 Kasutusalad

Keemia → Keemia
11 allalaadimist
thumbnail
3
doc

Tuumafüüsika raamatu küsimuste vastused

1.Milline on aatomi ja tema tuuma suurusjärk? Tuuma mõõtmed on umbes sada tuhat korda väiksemad kui aatomil. Aatomi läbimõõt on suurusjärgus 10 (-10) m , tuumal aga 10 (-15) m . 2.Mis määrab aatomi massiarvu? Aatomi massiarvu määrab prootonite ja neutronite koguarv ehk A=Z+N. 3.Kuidas paiknevad tuumaosakesed tuumas? Tuum on ehituselt liitosake ning koosneb kahesugustest osakestest. Ei tuuma ega ta koostisosakesi ei saa kujutleda kui kõvu kehi, sest neil mõlemal on sisemine struktuur, puudub aga kindel välispind. Tuumaosakesed paiknevad tuumas kihiti. Tuuma osakesed prootonid ja neutrinid paiknevad tuumas tihedalt üksteise kõrval ja nende vahel on vastastikmõju. 4.Kirjelda tuumajõude. (IX kl.) Tuumajõud on ülitugevad, ei levi kaugele ning tuumajõud mõjub kõikidele osakestele ühte moodi.. See jõud on väikestel kaugustel palju tugevam kui tõukuv elektrostaatiline jõud prootonite vahel, kuid kaugemal kahaneb see peaaegu olematuks. 5.Mis mä...

Füüsika → Füüsika
112 allalaadimist
thumbnail
8
doc

Massihävitusrelvad

sellepärast, et teada saada millisteks õudusteks on inimesed võimelised. Järgmistes lõikudes proovin vastuseid leida küsimustele: kuidas on neid ajaloos kasutatud, missugused on tagajärjed ja kas nende kasutamine on õigustatud. 1. Aatomipomm Tuumapomm ehk aatomipomm on suure plahvatusjõuga lõhkekeha, kus energia vabaneb raskete aatomituumade lõhustumisel. Lisaks tavalisetele tuumapommidele on olemas termotuumapommid (ehk vesinikupommid), neutronpommid ja kombineeritud tuumarelvad. Termotuumapommis kasutatakse tuumalõhustumisel tekkivat energiat termotuumareaktsiooni süütamiseks. Neutronpommi puhul on tegemist väikese lõhkejõuga kombineeritud tuumapommiga, mille puhul ei kasutata neutronpeeglit, vaid pommi eesmärk ongi võimalikult suure hulga neutronite vabastamine, et tekiks surmav neutronkiirgus. Kombineeritud tuumarelvade puhul võimendatakse

Ajalugu → Ajalugu
42 allalaadimist
thumbnail
3
docx

Tuumafüüsika konspekt

Tuumade lõhustumine- esineb selliseid isotoope, mille tuum jaguneb nautroni toimel kaheks ligikaudu võrdse suurusega tuumaks. Sellist reaktsiooni nim tuuma lõhustumiseks. Lõhustumisega kaasneb alati mõne vaba neutrioni väljalendamine, sest suurtes tuumades on neid prootonitega võrreldes rohkem. Ühtlasi vabaneb energiat, umbes miljon korda rohkem kui sama hulga aine põlemisel, sest tuumajõud on palju tugevamad kui elektrone siduvad elektrilised jõud. Mõne isotoobi tuum lõhustub iga kord, kui kohtub neutroniga, st ta ei vaja selleks neutroniga kaasa toodud lisaenergiat. Sel juhul võivad ka lõhustumisel tekkinud neutronid uusi lõhustumisi esile kutsuda. Sellist nähtust, kus reaktsioon põhjustab sellesama reaktsiooni jätkumist naaberaatomitel, nim ahelreaktsiooniks. Keemiliste reaktsioonide puhul oleks ahelreaktsioon näiteks lõkke põlemine, sest põlemisel tekkinud soojus süütab üha uued kütusekogused. Veel parem näide on püssirohu plahva...

Füüsika → Füüsika
62 allalaadimist
thumbnail
16
doc

Poska füüsika suuline arvestus

neutronite kiirust. Juhtvardaid saab liigutada, mis annavad võimaluse kontrollida neutronite liikumispiirkonda ning lõhustuva tuumkütuse kogust ehk kontrollida lõhustumise toimumist. 44. Mis on termotuumareaktsioonid? Sünteesireaktsioonid ehk termotuumareaktsioonid on kergete tuumade ühinemine raskemateks tuumadeks. Termotuumareaktsioon toimub temperatuuril vähemalt 10 miljonit kraadi. 45. Kirjelda termotuumapommi ehitust. Termotuumapommis liituvad liitium ja deuteerium ehk raske vesinik. 46. Kus kasutatakse tuumafüüsika rakendusi? Tuumareaktsioone kasutatakse metallitööstuses defektide leidmiseks, meditsiinis ja arheoloogias objekti vanuse kindaks tegemiseks. 47. Milliseid kiirgusühikuid kasutatakse ja mida need näitavad Kiirguse mõõtmiseks kasutatakse neeldumisdoosi ja kiirgumisdoosi. Neeldumisdoos näitab kiirguse energiahulka, mis neeldub keskkonna massiühikus. Ühik Gy – grei

Füüsika → Füüsika
23 allalaadimist
thumbnail
8
doc

Füüsika: olekud, aatomid, tuumareaktsioonid, universum

aeglusi, mis vähendab neutronite kiirust. Juhtvardaid saab liigutada, mis annavad võimaluse kontrollida neutronite liikumispiirkonda ning lõhustuva tuumkütuse kogust ehk kontrollida lõhustumise toimumist. 44. Mis on termotuumareaktsioonid? Sünteesireaktsioonid ehk termotuumareaktsioonid on kergete tuumade ühinemine raskemateks tuumadeks. Termotuumareaktsioon toimub temperatuuril vähemalt 10 miljonit kraadi. 45. Kirjelda termotuumapommi ehitust. Termotuumapommis liituvad liitium ja deuteerium ehk raske vesinik. 46. Kus kasutatakse tuumafüüsika rakendusi? Tuumareaktsioone kasutatakse metallitööstuses defektide leidmiseks, meditsiinis ja arheoloogias objekti vanuse kindaks tegemiseks. 47. Milliseid kiirgusühikuid kasutatakse ja mida need näitavad Kiirguse mõõtmiseks kasutatakse neeldumisdoosi ja kiirgumisdoosi. Neeldumisdoos näitab kiirguse energiahulka, mis neeldub keskkonna massiühikus. Ühik Gy ­ grei

Füüsika → Füüsika
17 allalaadimist
thumbnail
15
doc

Füüsika konspekt

TUUMAFÜÜSIKA KONSPEKT Uurimuste käigus on selgunud, et aatomi tuuma struktuur on väga keeruline ja see ei ole tänapäevani lõplikult selge. Aatomi tuum mõjutab otseselt elektronkatte struktuuri, sest see kujuneb tuuma positiivse laengu mõju väljas.Tuum valitseb oma elektrilaenguga elektrone tänu elektrilise mõju kaugeleulatuvusega. Aatomi kvantmehaanilises mudelis määrab üheselt elektronkatte kihilise struktuuri elektronide koguarv Tuum tervikuna määrab ära elektronide arvu aatomi elektronkattes ja nende asetuse valemiga 2 n 2 . Muus osas on aatom ja selle tuum täiesti eraldi vaadeldavad, sest neid eraldavad ruumilises ulatuses viis suurusjärku. Kui välja arvata prootonite arv, siis tuuma siseehitus aatomi elektronkattele mõju ei avalda ja tuum ise on on elektronkatte uurimise vahenditele kättesaamatu. Seepärast käsitletakse tuumamudelit täiesti eraldi, kuigi see peaks olema osa aatomimudelist. Tuum koosneb nukleonidest. Jõu...

Füüsika → Füüsika
147 allalaadimist
thumbnail
20
doc

Anorgaaaniline keemia kokkuvõte

Vesinik –, 1s1, esimesena sai Paracelsis, uuris Cavendish ja Lavoisier, maakoores massi järgi 0,87%, leviku poolest maal 9.kohal, universumis kõige rohkem. Saamine– suurtootmises looduslikest ja tööstuslikest gaasidest sügavjahutamise või katalüütilisel töötlemisel. Om - mõõduka aktiivsusega, lihtsaim ja kergeim element (14,5Xkergem kui õhk), o-a 1, 0, -1, molekul kaheaatomiline H2 , parim gaasiline soojusjuht, keemist 20,4K sulamist 14K, difundeerud kiiresti läbi paljude materj, lah halvasti vees ja org lahustes, raskesti poleriseeritav. Kasut – keemiatööstustes, raketikütustes, tuumaenergeetikas, termotuumapommis, keevitamisel. Ühendid – 1) hüdriidid (kui H o -a on -1), 2) vesi H2O – tähtsaim ja levinuim ühend, ¾ maa pinnast on vesi, lood vesi sis alati lisandeid (mered, ookeanid – kloriidid, mageveekogud – vesinikkarbonaadid), puhatatakse – destillatsioon, ioonvahetus, jää sulamisel ruumala väh 9%, soojusmahtuvus kasvab 2X, 3) deutee...

Keemia → Keemia
19 allalaadimist
thumbnail
15
doc

Keemia eksami kordamisküsimused

14 Aatomipommi ja termotuumarelva ehituse põhimõtted ­ selle seos aatomi ehitusega. uumapomm ehk aatomipomm (ka: aatompomm) on suure plahvatusjõuga lõhkekeha, kus energia vabaneb raskete aatomituumade lõhustumisel. Lisaks tavalisetele tuumapommidele on olemas termotuumapommid (ehk vesinikupommid), neutronpommid ja kombineeritud tuumarelvad. Termotuumapommis kasutatakse tuumalõhustumisel tekkivat energiat termotuumareaktsiooni süütamiseks. Neutronpommi puhul on tegemist väikese lõhkejõuga kombineeritud tuumapommiga, mille puhul ei kasutata neutronpeeglit, vaid pommi eesmärk ongi võimalikult suure hulga neutronite vabastamine, et tekiks surmav neutronkiirgus. Kombineeritud tuumarelvade puhul võimendatakse termotuumareaktsiooni energiat tuumalõhustumisega, mille käivitamiseks kasutatakse termotuumareaktsioonil tekkinud kiireid neutroneid

Keemia → Keemia
36 allalaadimist
thumbnail
26
doc

Füüsika 12kl astronoomia

ahelreaktsioon ei kujune plahvatuseks. Kui aga lõhustuva aine mass on suurem kui kriitiline mass, siis iga eralduv neutron kohtab uut tuuma ja protsess kujuneb plahvatuseks. 15 aatomipomm, Tuumapomm ehk aatomipomm (ka: aatompomm) on suure plahvatusjõuga lõhkekeha, kus energia vabaneb raskete aatomituumade lõhustumisel. Lisaks tavalisetele tuumapommidele on olemas termotuumapommid (ehk vesinikupommid), neutronpommid ja kombineeritud tuumarelvad. Termotuumapommis kasutatakse tuumalõhustumisel tekkivat energiat termotuumareaktsiooni süütamiseks. Neutronpommi puhul on tegemist väikese lõhkejõuga kombineeritud tuumapommiga, mille puhul ei kasutata neutronpeeglit, vaid pommi eesmärk ongi võimalikult suure hulga neutronite vabastamine, et tekiks surmav neutronkiirgus. Kombineeritud tuumarelvade puhul võimendatakse termotuumareaktsiooni energiat tuumalõhustumisega, mille käivitamiseks kasutatakse termotuumareaktsioonil tekkinud

Füüsika → Füüsika
99 allalaadimist
thumbnail
21
doc

Füüsika põhivara

Tuumakütuse kriitiline mass on antud tuumakütuse vähim mass, mille korral selles vôib alata tuumade ahelreaktsioon. Tuumareaktoris saab seda vähendada kasutades neutronite peegeldina berülliumit. 259. Termotuumareaktsioonid on kergete tuumade ühinemisreaktsioonid, mille kulgemiseks on vaja ülikôrget temperatuuri, sest tuumad peavad pôrkel lähenema teineteisele tuumajôudude môjupiirkonda. Nad kulgevad tähtedel ja vesiniku- ehk termotuumapommis. H1 + H2 _> He3 H2 + H2 _> He4 260. Radioaktiivne kiirgus kahjustab oma suure läbitungimisvôime tôttu organismi kôiki kudesid. Eriti aga kahjustab ta kiiresti paljunevaid rakke ( verd, vereloomeelundeid - luuüdi ), rikkudes nende energeetilist 2 tasakaalu ja pôhjustades vähkkasvajaid. 261. Kiirgusdoosi môôdetakse keha igas kilogrammis neeldunud kiirgusenergia hulgaga. Kui igas

Füüsika → Füüsika
535 allalaadimist
thumbnail
11
doc

Anorgaaniline keemia I

molekulmass) ning sellest tingitud suurim liikumiskiirus. Vesiniku ja hapniku segu mahuvahekorras 2:1 nimetatakse paukgaasiks (kergesti plahvatav segu). Kasutusalad: ¤ peam. keemiatööstuses, eriti NH3, HCl, CH3OH sünteesil vedelate rasvade hüdrogeenimisel (sh. margariin): Vesinikuga muudetakse taimsed ja loomsed rasvad (õlid) tahketeks, mis on aluseks margariini tootmisele. vedel vesinik: raketikütus deuteerium ja raske vesi: tuumaenergeetikas, termotuumapommis vesiniku H2 või H (monovesinik) põlemine ­ metallide lõikamine, keevitamine Ühendid: Tähtsamateks vesinikuühendeiks on vesi ja vesinikperoksiid. H2O2 vesinikperoksiid on värvustea või nõrgalt sinaka värvusega vedelik. Võrreldes vesinikperoksiidi molekuli konfiguratsiooni gaasi faasis ja kristalsena, ilmneb, et aatomite vahelised sidemepikkused erinevad vähe, kuid sidemetasapindade vaheline nurk on tunduvalt muutunud.

Keemia → Anorgaaniline keemia
97 allalaadimist
thumbnail
304
doc

ELEMENTIDE RÜHMITAMISE PÕHIMÕTTED

Kuid atomaarne vesinik võib in statu nascendi vähesel määral tekkida paljudes protsessides (hape + metall, vabanemine metalli (Pd, Pt) pinnalt jmt.). Atomaarne vesinik – paljudes protsessides väga aktiivne redutseerimisreaktsioonid (Marshi reaktsioon) 2.1.4. Kasutamine ¤ peam. keemiatööstuses, eriti NH3, HCl, CH3OH sünteesil vedelate rasvade hüdrogeenimisel (sh. → margariin) vedel vesinik: raketikütus deuteerium ja raske vesi: tuumaenergeetikas, termotuumapommis vesiniku H2 või H (monovesinik) põlemine – metallide lõikamine, keevitamine 2.1.5. Ühendid 1) Hüdriidid (ühendid kui vesiniku 0.-a. on -1) ioonil. või koval. (mõnikord metallil.) side; soolade omadused tugevad redutseerijad tekivad enamike metallidega (ainult Cu ja Cr ei moodusta hüdriide) Veega reageerimisel eraldub vesinik: KH + H2O = KOH + H2 Hüdriidid: aluselised, happelised (SiH4, BH3), amfoteersed (AlH3)

Keemia → Keemia
72 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun