Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Termodünaamika lühikonspekt - sarnased materjalid

soojus, entroopia, siseenergia, soojusmasin, termodünaamika, carnot, soojendi, jahuti, ühelt, paisub, mobile, teeks, printsiipi, entroopiat, lühikonspekt, soojusjuhtivuse, põhiseadus, difusiooniks, mikrotasemel, ehkki, kuumalt, tsükkel, ringprotsess, isotermiline, surub, tasemele, ainekoguse, summaarne, soojushulk, paisumisel, olemuselt, igavesti
thumbnail
24
docx

MEHAANIKA JA MOLEKULAARFÜÜSIKA

Kraadi pikkus Celsiuse ja Kelvini temperatuuriskaalades on sama, erineb vaid nullpunkt: 0 °C = 273 K. Absoluutsele nullile (T = 0 K) vastab soojusliikumise täielik peatumine. Gaas, vedelik ja tahkis erinevad molekulide liikumisvabaduse poolest. Gaasis on molekulide keskmised vahekaugused tunduvalt suuremad molekulide mõõtmetest. Vedelikus ja tahkises on molekulide vahekaugused mõõtmetega samas suurusjärgus. Soojus on energia liik. Kui see energia läheb ühelt kehalt teisele, siis räägitakse ülekantavast soojushulgast Q. Soojushulga ühikud: 1 cal (kalor) = 4,186 J. Keha soojusmahtuvus C näitab, kui suur soojushulk tuleb sellele kehale anda, et tõsta tema temperatuuri ühe kraadi võrra. C = Q / T . Soojusmahtuvuse SI-ühikuks on J / K. Aine erisoojus c näitab, kui suur soojushulk tuleb anda selle aine ühikulise massiga kogusele, et tõsta tema temperatuuri ühe kraadi võrra. c = Q / (m T) . Erisoojuse SI-ühikuks on J / (kg . K)

Aineehitus
6 allalaadimist
thumbnail
12
doc

MEHAANIKA JA MOLEKULAARFÜÜSIKA, PÕHIMÕISTED NING SEADUSED

Kraadi pikkus Celsiuse ja Kelvini temperatuuriskaalades on sama, erineb vaid nullpunkt: 0 °C = 273 K. Absoluutsele nullile (T = 0 K) vastab soojusliikumise täielik peatumine. Gaas, vedelik ja tahkis erinevad molekulide liikumisvabaduse poolest. Gaasis on molekulide keskmised vahekaugused tunduvalt suuremad molekulide mõõtmetest. Vedelikus ja tahkises on molekulide vahekaugused mõõtmetega samas suurusjärgus. Soojus on energia liik. Kui see energia läheb ühelt kehalt teisele, siis räägitakse ülekantavast soojushulgast Q. Soojushulga ühikud: 1 cal (kalor) = 4,186 J. Keha soojusmahtuvus C näitab, kui suur soojushulk tuleb sellele kehale anda, et tõsta tema temperatuuri ühe kraadi võrra. C = Q / T . Soojusmahtuvuse SI-ühikuks on J / K. Aine erisoojus c näitab, kui suur soojushulk tuleb anda selle aine ühikulise massiga kogusele, et tõsta tema temperatuuri ühe kraadi võrra. c = Q / (m T) . Erisoojuse SI-ühikuks on J / (kg . K)

Füüsika
152 allalaadimist
thumbnail
52
ppt

Dermodünaamika

Termodünaamika · Termodünaamika käsitleb soojusülekannet ja soojuse muundumist tööks · Termodünaamika tegeleb igasugust kütust tarbivate masinate konstrueerimise üldiste seaduspärasustega. · Termodünaamika on makrokäsitlus. Seepärast on kasutusel makroparameetrid ­ p, V, T, Q, U, m. · Termodünaamika põhineb kahele printsiibile ­ need on TD I ja II printsiip Ideaalse gaasi siseenergia ·Siseenergia on keha molekulide soojusliikumise keskmise kineetilise energia ning molekulidevahelise vastasmõju potentsiaalse energia summa. E = Ekin + Epot . ·Ideaalse gaasi puhul potentsiaalset energiat ei ole, seega siseenergia sõltub vaid kineetilisest energiast. ·Kineetiline energia sõltub temperatuurist. Seega ­ Keha siseenergia sõltub keha temperatuurist. Keha temperatuuri muutmise viisid Keha temperatuuri,seega ka siseenergiat, saab muuta kahel viisil 1

Füüsika
66 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

2. ehk isohooriline protsess ehk Charles’i [šarl’i] seadus, mida kirjeldab seos p1 p2 p    const T1 T2 T T  const p  f (V ) 3. ehk isotermiline protsess ehk Boyle’i-Marionette’i seadus, mida kirjeldab seos p1V1  p2V2  pV  const 7. SISEENERGIA. TÖÖ GAASI PAISUMISEL JA KOKKUSURUMISEL. ENERGIA JAOTUS VABADUSASTMETE JÄRGI. Keha siseenergiaks nimetatakse keha molekulide kineetilise ja potentsiaalse energia summat. Siseenergia levimist ühelt kehalt teisele nim soojusülekandeks. Soojusülekandes levib siseenergia soojemalt kehalt või kehaosalt külmemale. Seejuures soojema keha siseenergia väheneb ja külmema keha siseenergia suureneb. Termodünaamika I printsiip: Gaasile antav soojushulk on võrdne siseenergia

Füüsika
72 allalaadimist
thumbnail
5
docx

Füüsika eksamikordamine

pV=nRT, kus pgaasi rõhk(Pa), Vgaasi ruumala (m3), ngaasi moolide arv (mol), Runiversaalne gaasikonstant 8,314 J/K*mol, Tgaasi temperatuur (K) Isokooriliseks nimetatakse protsessi, kus gaasi ruumala on konstantne V=const, siis Isotermiliseks nimetatakse protseessi, kus gaasi temperatuur on konstantne T=const, siis p1V1=p2V2 Isobaariliseks nimetatakse protsessi, kus gaasi rõhk on konstantne p=const, siis 21)Termodünaamika I seadus.Isoprotsessid Termodünaamika I seadus sätestab, et keha siseenergia saab muutuda tänu soojushulgale, mis saadakse väliskeskkonnast ning tööle, mida süsteem teeb välisjõudude vastu. Inetgraalne kuju süsteemi lõpliku muutuse jaoks: q=U+w, kus qsoojushulk (J), Usüsteemi siseenergia muut(on võrdne soojusefektiga konstantsel ruumalal) (J), w töö (J) Isoprotsesside jaoks: V=const, A=0, , kus Atöö(J), qsoojushulk(J),nmoolide arv(mol),Runiversaalne gaasikonstant 8,314J/K*mol,T xtemperatuur (K), ivabadusastmete arv 22)Erisoojus.Soojusmahtuvus

Füüsika
487 allalaadimist
thumbnail
1
odt

Termodünaamika alused ( kokkuvõte )

Termodünaamika alused Termodünaamika kirjeldab ainete omadusi ilma aine siseehitusse tungimata. Kasutab makroparameetreid ja termodünaamika aluseks on põhiseadused ehk printsiibid. Siseenergiaks nimetatakse aine molekulide kineetilise ja potsensiaalse energia summat. Siseenergiat saab muuta mehaanilise tööga või soojusülekandega. Soojusülekandes levib siseenergia soojemalt kehalt külmemale. Soojema keha siseenergia väheneb ja külmema kehal suureneb. Soojusülekanne kestab seni kuni temperatuurid on ühtlustunud. Soojusülekande liigid: konvektsioon- sü, kus energia levib gaasi või vedeliku liikumise tõttu. Soojusjuhtivus- sü, kus energia levib ühelt aineosakeselt teisele molekulide liikumise tõttu, ilma et keha ümber paikneks. Soojuskiirgus- sü, kus energia levib elektromagnetlainete kiirgamise

Füüsika
6 allalaadimist
thumbnail
4
doc

Termodünaamika tunnikonspekt

absoluutse temperatuuriga Isobaariline ­ Charles'i seadus: jääva ruumala juures on antud gaasimassi rõhk võrdeline gaasi absoluutse temperatuuriga Clapeyroni s: antud gaasikoguse rõhu ja ruumala korrutis jagatud avsoluutse temperatuuriga on jääv suurus Moolides avaldatud, mistahes aine hulga korral omandab Clapeyroni võrrand kuju pV=nRT (MendelejeviClapeyroni võrrand) SISEENERGJA JA SELLE MUUTMISE VIISID. TD I. TDI ­ energia jäävuse seadus, mis seob siseenergia töö ja soojushulga Kõikidest siseenergia liikidest muutub soojusnähtustes vaid molekulide kineetiline ja nende vastastikmõju potensiaalne energia Siseenergia ­ keha koostisosakeste ja väljade vastastikmõju ning osakeste liikumise energia summat nim siseenergiaks U=3/2m/MRT (üheaatomilise ideaalse gaasi siseenergia) Soojushulgaks nim siseenergia hulka, mis kandub soojusvahetuse teel ühelt kehalt teisele. Soojushulka arvutatakse valemiga Q=cm..t

Füüsika
138 allalaadimist
thumbnail
3
docx

Füüsika KT termodünaamika kordamine

Termodünaamika KT 1) Kuidas käsitleb ainet termodünaamika ja milliseid parameetreid see kasutab? Temodünaamika ei eelda aine koosnemist aatomitest ega molekulidest. Kasutab makroparameetreid (keha mass, rõhk, ruumala, temp., tihedus). 2) Millistele probleemidele annab vastuse termodünaamika? Termodünaamika seletab, mis on keha siseenergia ja kuidas see muutub. 3) Millistele printsiipidele tugineb termodünaamika? I printsiip ­ siseenergia ja selle muundamine tööks (energia ei teki ega kao niisama). II printsiip ­ soojus ei saa iseenesest üle minna külmalt kuumemale. III printsiip ­ entroopia kasvab suletud süsteemis toimuvate soojuslike protsesside käigus. 4) Millest sõltub gaasi kui termodünaamilise süsteemi siseenergia. Siseenergia tähis, ühik? Siseenergia on keha molekulide kineetilise ja potentsiaalse energia summa. Sõltub gaasi rõhust ja ruumalast. Tähis U. Ühik J.

Termodünaamika
20 allalaadimist
thumbnail
6
docx

Füüsika kontrolltöö termodünaamika

Termodünaamika KT 1) Kuidas käsitleb ainet termodünaamika ja milliseid parameetreid see kasutab? Temodünaamika ei eelda aine koosnemist aatomitest ega molekulidest. Kasutab makroparameetreid (keha mass, rõhk, ruumala, temp., tihedus). 2) Millistele probleemidele annab vastuse termodünaamika? Termodünaamika seletab, mis on keha siseenergia ja kuidas see muutub. 3) Millistele printsiipidele tugineb termodünaamika? I printsiip – siseenergia ja selle muundamine tööks (energia ei teki ega kao niisama). II printsiip – soojus ei saa iseenesest üle minna külmalt kuumemale. III printsiip – entroopia kasvab suletud süsteemis toimuvate soojuslike protsesside käigus. 4) Millest sõltub gaasi kui termodünaamilise süsteemi siseenergia. Siseenergia tähis, ühik? Siseenergia on keha molekulide kineetilise ja potentsiaalse energia summa. Sõltub gaasi rõhust ja ruumalast. Tähis U. Ühik J.

Termodünaamika
22 allalaadimist
thumbnail
3
docx

11. klassi füüsika konspekt: Termodünaamika alused

11. klassi füüsika: Termodünaamika alused 1. Mis on termodünaamika (TD)? Termodünaamiks on soojusnähtuste makrokäsitlus, nii et siin ei eeldata teadmisi molekulidest. Termodünaamika aluseks on kaks printsiipi: termodünaamika 1.printsiip väljendab energia jäävust ja 2.printsiip väljendab asjaolu, et kõik iseenesest kulgevad protsessid toimuvad kindlas suunas. Neid printsiipe ei ole võimalik teoreetiliselt tõestada ega tuletada, nad on avastatud suure hulga vaatlus- ja katseandmete üldistamisel. Termodünaamika kasutab tervet rida makroparameetreid: a) Rõhk p b) Ruumala V c) Absoluutne temperatuur T d) Keha mass m e) Siseenergia U f) Soojushulk Q

Füüsika
56 allalaadimist
thumbnail
3
doc

Termodünaamika

Kehad koosnevad molekulidest, mis on pidevas soojusliikumises ning mõjutavad üksteist tõmbe- ja tõukejõududega. Kui keha liigub siis omab ta kineetilist energiat. Kui keha on teiste kehadega vastastikmõjus, siis annab ta potentsiaalset energiat. 2. Mida nimetatakse keha siseenergiaks? Keha koostisosakeste kineetiliste ja potentsiaalsete energiate summat nimet. KEHA SISEENERGIAKS 3. Millised on kaks moodust keha siseenergia muutmiseks? Soojusülekandega ja mehhaanilise tööga. 4. Loetle soojusülekande kolm liiki. Soojusjuhtivus, konvektsioon, soojuskiirgus. 5. Millega on määratletud soojusülekande suund? Soojusülekandel antakse energiat alati kõrgema temperatuuriga madalama temperatuuriga kehale. 6. Kui kaua saab soojusülekanne kesta? Soojusülekanne kestab kuni sellest osa võtvate kehade temp. on võrsustunud. 7. Milline on soojusjuhtivuse toimemehhanism?

Füüsika
52 allalaadimist
thumbnail
1
doc

Termodünaamika konspekt

kütust tarbivate masinate konstrueerimise kõige üldisemate seaduspärasustega. Ei eelda aine koosnemist aatomitest ja molekulidest, kasutatakse makroparameetreid. Keskkonnasõbralikkus tähendab peale looduslike kütuste energia efektiivse kasutamise ka energiatootmise jäätmete oskuslikku neutraliseerimist või peitmist. Soojusmasinateks nimetatakse masinaid, mis muundavad soojust tööks. Termodünaamika esimene printsiip väljendab energia jäävuse seadust, teine väidab, et protsesside iseeneslikul kulgemisel looduses on kindel suund. Kumbagi ei saa tõestada. Molekulide energia e. siseenergia, mida sisaldab iga keha, on soojusliikumise energia ja molekulide vastastikmõju potentsiaalse energia summa. Kui soojusvahetuse käigus anda kehale mingi soojushulk, siis tema temperatuur tõuseb ning siseenergia suureneb. Kui keha annab mingi soojushulga ära, siis tema siseenergia väheneb

Füüsika
117 allalaadimist
thumbnail
4
doc

Soojusnähtused

Soojusnähtused. 1. Siseenergia olemus ja selle muutmise viisid: Siseenergia – keha molekulide kineetilise ja nende vahelise vastastikmõju potentsiaalse energia summa a. Soojusülekande teel – Q=∆U (∆U – siseenergia muut) (Q – soojushulk – iseloomustab soojusvahetuse teel ülekantud energia hulka) Soojendamine – Q>0 ∆U>0 Jahutamine – Q<0 ∆U<0 Soojusjuhtivus – soojusenergia kandumine kuumemalt kehalt külmemale kehale aineosakeste vastasmõju tagajärjel (metallid) Konvektsioon – aine liikumisega kaasnev soojuse levimine vedelikus või gaasis Soojuskiirgus – soojuse levimine kehade poolt kiiratava, temperatuurist sõltuva elektromagnetkiirguse mõjul b

Füüsika
8 allalaadimist
thumbnail
1
docx

Termodünaamika kokkuvõte

Termodünaamika kirjeldab ainete omadusi ilma aine siseehitusse tungimata, kasutades makroparameetreid (ainehulk) on termodünaamika aluseks printsiibid, I printsiip ­ süsteemile juurde antev soojushulk kulub süsteemi siseenergia suurendamiseks ja mehaaniliseks tööks, mida tehakse välisjõudude vastu (paisumine), II printsiip ­ suletud süsteemi soojusliku protsessi tulemusena entriipia kasvab, temp väheneb (soojus ülekanne ei saa iseenesest toimuda külmemalt kehalt soojemale), siseenergia ­ moodustub molekulide kineetilisest ja potensiaalsest energiast (olek, temp), soojusülekanne ­ siseenergia levimine ühelt kehalt teisele, liigid: soojusjuhtivus ­ soojusülekanne, kus energia levib ühelt aineosakeselt teisele molekulivaheliste põrgete tõttu, ilma, et aine ümber paikneks, soojuskiirgus ­ soojuskiirgus, kus energia levib elektromagnetlainete kiirgamise ja neelamise tõttu, toimub ka vaakumis, kuna ainet pole vaja, konvektsioon ­ soojusülekanne, kus energia

Füüsika
17 allalaadimist
thumbnail
6
doc

Termodünaamika

Siseenergiaks nimetatakse keha molekulide kineetilise ja potentsiaalse energia summat. Siseenergia levimist ühelt kehalt teisele nimetatakse soojusülekandeks. Soojusülekandes levib siseenergia soojemalt kehalt või kehaosalt külmemale. Seejuures soojema keha siseenergia väheneb ja külmema keha siseenergia suureneb. Soojusülekanne kestab seni, kuni kehade temperatuurid saavad võrdseks. Sel juhul öeldakse, et on saabunud termodünaamiline tasakaal. Soojusülekannet liigitatakse siseenergia ülekande viiside alusel soojusjuhtivuseks, konvektsiooniks ja soojuskiirguseks.  Soojusjuhtivuseks nimetatakse soojusülekannet, kus energia levib ühelt aine osalt teisele molekulidevaheliste põrgete tõttu, ilma et aine ümber paikneks.  Konvektsiooniks nimetatakse soojusülekannet, kus energia levib gaasi- või vedeliku liikumise tõttu.  Soojuskiirguseks nimetatakse soojusülekannet, kus energia levib elektromagnetlainete kiirgamise ja neelamise tõttu.

Termodünaamika
22 allalaadimist
thumbnail
20
pdf

Füüsika eksam

Mida aga tähistab sel juhul suurus n? Baromeetrilises valemis näitas see molekulide arvu ruumalaühiku kohta kõrgusel , kuid ei öelnud midagi nende molekulide kiiruste kohta. Võiksime väita, et see tihedus sisaldab kõiki neid molekule, mis võiksid tõusta kõrgemale kõrgusest . Molekulide koguarv vastaks siis neile molekulidele, mis suudavad tõusta kõrgemale kõrgusest . Boltzmanni jaotus kuulub nn. integraalsete jaotusfunktsioonide hulka. 32. Termodünaamika I printsiip ja kuidas see seadus näeb välja isoprotsessides(kõigis neljas). du=dQ-dA, mis on i m  siseenergia(keha kin ja pot energia vms). Ideaalse gaasi korral on ; A= pdV (dA=pdV) u  2

Füüsika
91 allalaadimist
thumbnail
30
docx

Füüsika eksam vastustega: liikumine

Liikuv objekt hälbib põhjapoolkeral paremale ja lõunapoolkeral vasakule. Piki ekvaatorit liikuvaile objektidele Coriolisi efekt mõju ei avalda. ⃗a =2( c ω ⃗ ⃗u ) ⃗ F c =m ⃗a x c 10.Töö, võimsus, kineetiline energia. Töö (A) on füüsikaline suurus, mis iseloomustab ühelt füüsikaliselt objektilt teisele kanduva energia hulka(J – ühik) Kui jõud F on konstantne, liikumine on sirgjooneline, läbitud teepikkus on s ning jõu suuna ja liikumise suuna vaheline nurk on α, siis töö A avaldub korrutisena A=F·s·cosα. Erijuhul, kui jõu ja liikumise suund langevad kokku avaldub töö A=F·s. Teiste sõnadega, töö avaldub jõuvektori ja nihkevektori skalaarkorrutisena. Kui töö on positiivne, siis teeb jõud tööd

Füüsika
47 allalaadimist
thumbnail
34
docx

Füüsika eksami konspekt

jäikustegur. Miinusmärk Hooke'i seaduses näitab, et elastsusjõud on deformeeriva jõu suhtes vastassuunaline. Jäikustegur näitab, kui suur elastsusjõud tekib keha pikkuse ühikulisel muutmisel. Hõõrdejõud on liikumisele vastassuunaline takistusjõud, mis tekib kahe pinna kokkupuutel. F=μmg, kus μ –hõõrdetegur 10,* Töö, võimsus, kineetiline energia. Töö (A) on füüsikaline suurus, mis iseloomustab ühelt füüsikaliselt objektilt teisele kanduva energia hulka(J – ühik) Kui jõud F on konstantne, liikumine on sirgjooneline, läbitud teepikkus on s ning jõu suuna ja liikumise suuna vaheline nurk on α, siis töö A avaldub korrutisena A=F·s·cosα. Erijuhul, kui jõu ja liikumise suund langevad kokku avaldub töö A=F·s. Teiste sõnadega, töö avaldub jõuvektori ja nihkevektori skalaarkorrutisena. Gaasi kokkusurumiseks tehtav töö avaldub A= ∫ Fds

Füüsika
46 allalaadimist
thumbnail
3
docx

SOOJUSÕPETUS 10. klass

FÜÜSIKA KONTROLLTÖÖ KORDAMISKÜSIMUSTE VASTUSED. SOOJUSÕPETUS -Absoluutne temperatuuriskaala ehk Kelvini temperatuuriskaala. 0 K = 273 ehk 0 K on absoluutne nullpunkt. Selle temperatuuriskaala järgi võib temperatuur olla ainult positiivne. Kelvini temperatuuriskaalat nimetatakse ka termodünaamiliseks temperatuuriskaalaks, sest selle jaotuvuse aluseks on termodünaamika II printsiip. -Gaasi olekuvõrrandid kus M on gaasi molaarmass m on gaasi kogus T on absoluutne temperatuur p on rõhk R on 8,31 -Isoprotsessid (nimetused, olekuvõrrandi erikujud) ISOTERMILINE protsess T = const T=T1=T2 Graafikuks on parabool ISOBAARILINE protsess p=const Graafikuks on sirge ISOHOORILINE protsess V=const Graafikuks on sirge -Siseenergia definitsioon, siseenergia muutmise võimalused

Füüsika
90 allalaadimist
thumbnail
10
odt

Füüsika 10. klassi teemad

· V(ruumala) konsentratsioon) Kui üht olekuparameetrit. · T(abs. Temperatuur) · v(molekulide muuta, siis muutub vhmlt · (tihedus) keskmine kiirus veel üks ja seega ka olek. Molekul- molekulaarfüüsikas vähim osake, millest ained koosnevad ja mis on pidevas kaootilises liikumises Temperatuur- iseloomustab keha soojuslikku seisundit; molekulide liikumise keskmise kineetilise energia ja siseenergia mõõt (t) Absoluutne temperatuur- temperatuur Kelvini skaalal (T) Absoluutne nulltemperatuur- temperatuur, mille saavutamisel molekulid lakkavad liikumast Ideaalne gaas- lihtsaim mudel gaasi kirjeldamiseks, milles ei arvestata molekulide mõõtmeid ja vastastikmõju Mool- ainehulk, mis sisaldab Avogadro arvuga võrdse arvu molekule või aatomeid (mol) Avogadro arv- aatomite või molekulide arv ühes moolis aines (N A) Molaarmass- ühe mooli aine mass (M)

Füüsika
60 allalaadimist
thumbnail
15
pdf

TERMODÜNAAMIKA ALUSED

KOOLIFÜÜSIKA: SOOJUS 2 (kaugõppele) 5. TERMODÜNAAMIKA ALUSED 5.1 Termodünaamika I seadus Termodünaamika I seadus annab seose kehale antava soojushulga, keha siseenergia ja paisumistöö vahel Q = U + A , kus Q on juurdeantav soojushulk, U siseenergia muut ja A paisumistöö. Juhul kui keha saab väljastpoolt mingi soojushulga, on Q positiivne ( Q > 0), juhul kui keha annab ära mingi soojushulga, on Q negatiivne ( Q < 0). Juhul kui keha teeb paisumisel (kasulikku) tööd, on A positiivne ( A > 0), juhul kui aga keha kokkusurumiseks tehakse (välist) tööd, on A negatiivne ( A < 0). Keha siseenergia on molekulide soojusliikumise summaarne kineetiline energia ja molekulide vastastikmõju potentsiaalse energia summa, ideaalse gaasi korral aga

Füüsika
39 allalaadimist
thumbnail
76
pdf

Soojusõpetuse konspekt

Tallinna Ülikool Matemaatika ja Loodusteaduste Instituut Loodusteaduste osakond Soojusõpetuse lühikonspekt Tõnu Laas 2009-2010 2 Sisukord Sissejuhatus. Soojusõpetuse kaks erinevat käsitlusviisi.......................................................................3 I Molekulaarfüüsika ja termodünaamika..............................................................................................4 1.1.Molekulide mass ja mõõtmed....................................................................................................4 1.2. Süsteemi olek. Protsess. Tasakaaluline protsess.......................................................................4 1.3. Termodünaamika I printsiip.....................................................................................................

Füüsika
31 allalaadimist
thumbnail
2
odt

Termodünaamika KT (10.klass)

molekulide mõõtmeid ja vastastikmõju. Molekulid on punktmassid; molekulide põrked anuma seintega on elastsed; molekulide vahel ei ole vastastikmõjusid, puuduvad tõmbe ja tõukejõud 5. Temperatuur makrokäsitluses – suurus, mis iseloomustab keha soojusliku seisundit Temperatuur mikrokäsitluses – iseloomustab molekulide keskmist kineetilist energiat Absoluutne 0kraadi – molekulid ei liigu ning langevad raskusjõu mõjul anuma põhja 6. Termodünaamika – teadusharu, mis uurib soojusnähtusi eeldamata aine molekulaarset ehitust. 7. Soojusvahetus – protsess, kus üks keha annab soojust ja teine keha saab soojust juurde 8. Termodünaamiline süsteem – Kehade süsteem, mis vahetavad soojust 9. Ideaalse gaasi olekuvõrrand: pV = m/M*RT 10. Isoprotsess – Protsess, kus üks olekuparameeter kolmest jääb muutumatuks Jagunevad: Isobaariline – protsess, kus muutumatuks jääb rõhk[p=const], näide: gaasi

Termodünaamika
8 allalaadimist
thumbnail
5
doc

Termodünaamika alused ( kokkuvõte)

Termodünaamika alused Siseenergiaks nim. keha molekulide kineetilise ja potentsiaalse energia summat. Siseenergia levimist ühelt kehalt teisele nim. soojusülekandeks. Soojusülekandes levib siseenergia soojemalt kehalt või kehaosalt külmemale. Seejuures soojema keha siseenergia väheneb ja külmema keha siseenergia suureneb. Soojusülekanne kestab seni, kuni kehade temp. saavad võrdseks. Soojusülekande liigutus: ¤Soojusjuhtivuseks nim. soojusülekannet, kus energia levib ühelt aineosakeselt teisele molekulidevaheliste põrgete tõttu, ilma et aine ümber paikneks. ¤Konvektsiooniks nim. soojusülekannet, kus energia levib gaasi-või vedeliku liikumise tõttu. ¤Soojuskiirguseks nim. soojusülekannet, kus energia levib elektromagnetlainete kiirgamise ja neelamise tõttu. Kui kontaktis olevate kehade makroparameetrid ei muutu, nim. kehi soojuslikus ehk termodünaamilises tasakaalus olevaiks.

Füüsika
39 allalaadimist
thumbnail
2
doc

Molekulaarfüüsika alused

Ek = 3/2kT = m0v2 / 2. Asendades eelmisse valemisse: p = 2/3nEk ja p = nkT (k ­ boltzmanni konstant, J/K) · Ideaalse gaasi olekuvõrrand ­ antud gaasikoguse rõhu ja ruumala korrutis on võrdeline absoluutse temeperatuuriga. pV = (m / ) RT. Seoseid: m / = ; R = NAk. Isoprotsessid: 1) Boyle'i ­ Mariotte'i seadus: isotermsel protsessil antud gaasikoguse rõhu ja ruumala korrutis on jääv. T = const. pV = const., seega kogu soojus läheb tööks (Q = A). Graafikuks hüperbool. 2) Gay ­ Lussaci seadus: isobaarilisel protsessil antud gaasikoguse ruumala ja temperatuuri suhe on jääv. p = const. V / T = const. Graafikuks sirge. 3) Charles'i seadus: isohoorilisel protsessil antud gaasikoguse rõhu ja temperatuuri suhte on jääv. V = const. p / T = const., seega kogu soojus läheb siseenergia muutmiseks (Q = U). Graafikuks sirge. 4) Adiabaatiline protsess: selline protsess, mille käigus ei toimu soojusvahetust

Füüsika
90 allalaadimist
thumbnail
5
pdf

Molekulaarfüüsika - ja termodünaamika alused

Füüsika 10. klassile _____________________________________________________________________ Molekulaarfüüsika - ja termodünaamika alused Ettevalmistus kontrolltööks 1. Missugustel väidetel põhineb molekulaarkineetiline teooria? · Aine koosneb molekulidest · Osakesed on pidevas liikumises · Osakestele mõjuvad tõmbe- või tõukejõud 2. Mis on soojusliikumine? Molekulide, aatomite ja elektronide korrapäratut liikumist nimetatakse soojusliikumiseks. 3. Miks muutub molekulide kineetiline energia?

Füüsika
6 allalaadimist
thumbnail
3
doc

Energia kontrolltöö

potentsiaalset energiat? Kehad koosnevad molekulidest, mis on pidevas soojusliikumises ning mõjutavad üksteist tõmbe- ja tõukejõududega. Kui keha liigub siis omab ta kineetilist energiat. Kui keha on teiste kehadega vastastikmõjus, siis annab ta potentsiaalset energiat. 2. Mida nimetatakse keha siseenergiaks? Keha koostisosakeste kineetiliste ja potentsiaalsete energiate summat. 3. Millised on kaks moodust keha siseenergia muutmiseks? Soojus ülekandega ja mehhaanilise tööga. 4. Loetle soojusülekande kolm liiki. Soojusjuhtivus, soojuskiirgus ja konvektsioon 5. Millega on määratletud soojusülekande suund? Soojusülekandel antakse energiat alati kõrgema temperatuuriga madalama temperatuuriga kehale. 6. Kui kaua saab soojusülekanne kesta? Soojusülekanne kestab kuni sellest osa võtvate kehade temperatuur on võrdsustunud 7. Sõnasta soojusliku tasakaalu tingimus suletud süsteemis soojusülekande korral.

Füüsika
26 allalaadimist
thumbnail
12
doc

Soojustehnika - küsimused vastustused

Termodünaamika on teadus erinevate energialiikide muutus S= S2- S1 = s1s2 dQ/ T [J/(kg*K)]. Entroopia on vastastikustest muundumistest. Termodünaamika hõlmab ekstensiivne suurus. Entroopia kui olekufunktsiooni väärtuse mehaanilisi, soojuslike, elektrilisi, keemilisi, elektromagnetilisi ja määravad kaks meelevaldset olekuparameetrit. Gaasi entroopia muid nähtuseid. Tehnilise termodünaamika põhi ülesanne on väärtus normaaltingimustel loetakse nulliks. teoreetiliste aluste loomine, soojusmootorite, soojusjõu seadmete, soojus transformaatoritele. 4. Isohooriline protsessiks nim. sellist protsessi, kus Termodünaamilise süsteemi all mõistetakse kehade kogu, termodünaamilise süsteemi soojuslikul mõjutamisel selle maht mis võivad olla nii omavahel kui ka väliskeskkonnaga ei muutu

Soojustehnika
89 allalaadimist
thumbnail
1
doc

Termodünaamika alused

Kordamine kontrolltööks 3. TERMODÜNAAMIKA ALUSED Termodünaamika põhineb mittetõestatavatele printsiipidele. Makrokäsitlus. Käsitleb soojusülekandeid ja soojuse muundamist tööks. Siseenergia on keha kineetlisise- ja potensiaalse energia summa. Esimene printsiip: Termodünaamilisele süsteemile juurdeantav soojushulk läheb süsteemi siseenergia suurendamiseks ja süsteemi poolt välisjõudude vastu tehtavaks tööks. Q=U+A Soojusmasinad on masinad, mis muundavad soojust tööks. Neljataktiline sisepõlemismootor: 1. takt- sisselasketakt: kütus siseneb, väljalaskeklapp on suletud, kolb liigub alla 2. takt-survetakt: küttesegu surutakse kokku, süttib küünlasädemega 3. takt- töötakt: gaasid paisuvad surudes kolvi alla 4

Füüsika
106 allalaadimist
thumbnail
54
pdf

SOOJUSTEHNIKA EKSAMI VASTUSED

Töötava keha olekuparameetrid. Neande all mõistetakse füüsikalisi makrosuurusi, mis määravad kindlaks töötava keha oleku. Intensiivseteks nim. selliseid töötava keha parameetreid, mis ei sõltu termodün.süsteemis oleva keha massist või osakeste arvust. Intensiivne parameeter on nt. rõhk ja temp. Aditiivseteks e. ekstensiivseteks termodün parameetriteks on parameetrid, mis on proportsionaalsed süsteemis olevate kehade massiga või osakeste arvuga. Nt. maht, energia, entroopia, entalpia. Parameetreid, mille kaudu iseloomustatakse soojuse ja töö vastastikust muundumist, nim. termilisteks olekuparameetriteks. Termodünaamilise keha termilisteks olekuparameetriteks on erimaht (tihedus), rõhk ja temp. Soojuslikeks oleku-parameetriteks on aga suurused, mis iseloomustavad termodünaamilise süst. energeetilist olukorda. Nendeks on: siseenergia u,[J/kg]; entalpia h,[J/kg]; entroopia s,[J/kg]. Sõltumatud olekuparameetrid on: 1.Erimaht(keha massiühiku maht) v=1/,

Soojustehnika
46 allalaadimist
thumbnail
2
doc

Soojustehnika teooria eksamiks

vahemikus 0- kindlaks töötava keha oleku. Intensiivseteks nim. siseenergiaks, mis on keha molekulide kulg -ja 100C, alla 0 on ta tahkes ja üle 100 gaasilises. Aine selliseid töötava keha parameetreid, mis ei sõltu pöörlemisliikumiseenergia, aatomite võnkumisenergia jt. faasilise oleku väljendamiseks kasut. faasimuutuse termodün.süsteemis oleva keha massist või osakeste energiate summa. siseenergia antakse tavaliselt keha 1kg diagramme. Nt. pt- diagramm, Ts- diag., Pv, hs- diag. arvust. Intensiivne parameeter on nt. rõhk ja temp. kohta. Siseenergia on ekstensiivne suurus. Siseen. kui Aditiivseteks e. ekstensiivseteks termodün parameetriteks olekufunktsiooni väärtuse määravad keha kaks on parameetrid, mis on proport-sionaalsed süsteemis meelevaldset olekuparameetrit, sagedamini valitakse olevate kehade massiga või osakeste arvuga. Nt

Soojustehnika
727 allalaadimist
thumbnail
90
pdf

Soojustehnika eksami küsimused

Sellelt lingilt saab tõmmata Arvo otsa soojustehnika raamatu. http://digi.lib.ttu.ee/i/?967 Faili lõpus on eksami näide, mida tunnis vaadati. 1. Termodünaamika põhimõisted, termodünaamiline süsteem, termodünaamiline keha jatermodünaamilised olekuparameetrid. Termodünaamiline süsteem. Nimetus „termodünaamika” hõlmab see mõiste kõik nähtused mis kaasnevad energiaga ja energia muundusega. Jaguneb füüsikaline, keemiline ja tehniline termodünaamika. Tehniline termodünaamika käsitleb ainult mehaanilise töö ja soojuse vastastikuseid seoseid. Termodünaamiline süsteem on kehade kogu, mis võivad olla nii omavahel kui ka väliskeskkonnaga energeetilises vastasmõjus. Väliskeskkond on termodünaamilist süsteemi ümbritsev suure energia mahtuvusega keskkond, mille teatud olekuparameetrid (T, p jne.) ei muutu, kui süsteem mõjutab teda soojuslikul, mehaanilisel või mõnel muul viisil. Termodünaamilise süsteemi üks lihtne näide on

tehnomaterjalid
121 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele. Termodünaamika esimene seadus on energia jäävuse seadus, rakendatuna soojuslikele protsessidele, teine seadus aga määrab kindlaks vahekorra olemasoleva soojuse ja temast

Termodünaamika
17 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun