Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

"tehted-trigonomeetrilisel-kujul" - 12 õppematerjali

thumbnail
4
docx

Kompleksarvu trigonomeetriline kuju ja tehted trigonomeetrilisel kujul

POLAARKOORDINAADID, KOMPLEKSARVU TRIGONOMEETRILINE KUJU Tasandi punktide kirjeldamiseks võib kasutada lisaks komplekstasandile ka polaarkoordinaate. Selleks fikseerida tasandile punktist O väljuv kiir. Tasandi punkti X kirjeldamiseks saab samuti kasutada kahe reaalarvu:  ρ – punktide O ja X vaheline kaugus – polaarraadius – moodul ρ=| z|=√ z ´z = √ x + y 2 2  φ – nurk kiire ja sirglõigu OX vahel – polaarnurk – argument Tähistatakse φ=Arg (z ) Arg ( z )=arg ( z ) +2 kπ , kus k ∈Z Argumendi peaväärtus ...

Matemaatika → Lineaaralgebra
34 allalaadimist
thumbnail
9
docx

Lineaaralgebra

Kordamisküsimused 1) Kompleksarvu mõiste. Kompleksarvu algebraline kuju ja tehted algebralisel kujul. DEF. k.arvuks nim. Arvufoori (a,b) kus a,bR. esitatakse z=a+bi (a-reaalosa,b-imaginaar osa,i- imaginaar ühik). Põhimõiste olgu z1=a1+b1i,z2=a2+b2i z1=z2 kui a1= a2 ja b1=b2, z=0 kui a=0 ja b=0,k- arvu z1=a1-b1i nim.kaas k-arvuks z1=a1+b1i. Arvutamine z1+z2= (a1+a2)+(b1+b2)i, z1-z2= (a1-a2)+(b1-b2), z1*z2= z 1 ( a1 +b 1 i ) (a 2+b 2 i) (a1+b1i)*(a2+b2), = z 2 ( a2 +b 2 i ) (a 2+b 2 i) 2) Kompleksarvu trigonomeetriline kuju ja tehted trigonomeetrilisel kujul. geomeetriline kujutamine k-arv/reaalarvu paar (a,b).saab k-arvu z=a+bi kujutada xy tasandil kus kordinaadid a-reaal osa, b- imaginaar osa ja vastavalt X-telg k-arvu reaal telg ja Y- telg ­ imaginaar telg.XY tasandi iga punkt M(x,y) ongi z=x+iy ...

Matemaatika → Matemaatiline analüüs 2
32 allalaadimist
thumbnail
4
odt

Kompleksarvud

Kompleksarvud Kompleksarvu mõiste: Arve kujul a+ib, kus a ja b on reaalarvud ja i on imaginaarühik, nimetatakse kompleksarvudeks. Kõikide kompleksarvude hulka tähistatakse sümboliga C Kaks kompleksarvu on võrdsed parajasti siis, kui nende imaginaarosad ja reaalosad on vastavalt võrdsed a + bi = c + di <=> a = c ja b = d Kompleksarve a + bi ja a - bi nimetatakse kaaskompleksarvudeks. Näiteks 5+2i ja 5-2i. Kompleksarvu a + bi vastandarvuks nimetatakse kompleksarvu -a ­ bi. Näiteks 7+5i ja -7- 5i. Tehted kompleksarvudega: (a + bi) + (c + di) = (a + c) + (b + d)i (5 -3i)+(2 + 7i) = (5+2) + (-3+7)i = 7 + 4i (a + bi) - (c + di) = (a - c) + (b ­ d)i (5-3i)-(2+7i) = (5-2) +(-3-7)i = 3 - 10i (a + bi)(c + di) = (ac - bd) + (ad + bc)i (5-3i)(2+7i) = (52 - (-3)7) + (57 +(-...

Matemaatika → Matemaatika
110 allalaadimist
thumbnail
8
pdf

Kompleksarvud gümnaasiumiõpikus

Arvu a nimetatakse kompleksarvu a + ib reaalosaks ja arvu bi selle imaginaarosaks. KOMPLEKSARVUD Kui a = 0, siis on tegemist imaginaararvuga bi, kui b = 0, siis saame arvu a + 0·i, mis on reaalarv a. Kui a = b = 0, siis siis saame tulemuseks arvu 0. KOMPLEKSARVU MÕISTE. TEHTED KOMPLEKSARVUDEGA Kaks kompleksarvu on omavahel võrdsed parajasti siis, kui nende reaalosad ja 1. Kompleksarvu mõiste imaginaarosad on vastavalt võrdsed: ...

Matemaatika → Matemaatika
16 allalaadimist
thumbnail
9
doc

Lineaaralgebra

Lineaaralgebra I kontrolltöö teooriaküsimused 1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi , (1) kus a ja b on reaalarvud ja i on niinimetatud imaginaarühik, mis on määratud võrdustega i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z2 = a2 + b2i loetakse võrdseteks ( z1 = z2 ) , kui a1 = a2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. ...

Matemaatika → Lineaaralgebra
920 allalaadimist
thumbnail
4
docx

Kompleksarvude juurimine

KOMPLEKSARVU JUURIMINE Kompleksarvu z n -astme juureks (n ∈ N ) nimetatakse kompleksarvu ω , mille korral ω n=z , s.o. √n z=w ⟺ w n=z cos φ 1+isin φ 1 Olgu z=ρ ( cosφ+isinφ ) ω=ρ1 ¿ z=ρ ( cosφ+isinφ )=ρn1 ( cos ( n φ1 ) +isin ( n φ 1) )=ωn Kaks trigonomeetrilisel kujul esitatud kompleksarvu on võrdsed siis, kui  kompleksarvude moodulid on võrdsed ρn1= ρ , n φ1−φ=2 kπ , kus k ∈Z n φ+ 2 kπ  kompleksarvude argumentide vahe on 2π kordne ρ 1=√ ρ , φ1 = , ...

Matemaatika → Lineaaralgebra
30 allalaadimist
thumbnail
2
doc

Lineaar algebra teooria2

Kompleksarvud Kompleksarvu mõiste. Kompleksarve on kombeks tähistada väikese tähega z. Kompleksarvudel on mitmeid esitusviise ehk kujusid. Kõige levinum on kompleksarvu algebraline kuju. Def Kompleksarvuks (algebralisel kujul) nimetatakse arvu z = a + ib, kus a ja b on reaalarvud ja i on imaginaar ühik. Imaginaarühik, mida tähistatakse i, defi'kse võrdusega i2 = -1.Kõigi kompleksarvude hulka tähistatakse C. Def Kompleksarvu z = a + ib C korral nim arvu a R selle kompleksarvu reaalosax ja arvu b R nim selle kompleksarvu imaginaarosaks. Kaks kompleksarvu on võrdsed parajasti siis, kui 1) on võrdsed nende reaalosad, 2) on võrdsed nende imaginaarosad. Algebraline kuju on kompleksarvu kujudest kõige levinum. Kuid on ka teisi esitusviise. Kompleksarve nim arvudex, sest nendega saab sooritada aritmeetilisi tehteid: liitmist, lahutamist, korrutamist, jagamist. Komar liitmine ja lahutamine on kõige otstarbekam teha algebralisel kujul. Def. Ko...

Matemaatika → Lineaaralgebra
478 allalaadimist
thumbnail
4
pdf

Lineaaralgebra I osaeksam 2013

1. Kompleksarvu mõiste, imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi, (1) kus a ja b on reaalarvud ja i on nn. imaginaarühik, mis on määratud võrdustega i = - 1 või i 2 = -1 . Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z 2 = a 2 + b2 i loetakse võrdseteks ( z1 = z 2 ) , kui a1 = a 2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0. z = a + bi = r cos + i sin ehk z = r (cos + i sin ) Avaldist võrduse paremal poolel nimetatakse kompleksarvu z = a + bi trigonomeetriliseks kujuks; suurust r nimetatakse kompleksarvu z mooduliks ja suur...

Matemaatika → Lineaaralgebra
416 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiiv...

Matemaatika → Lineaaralgebra
197 allalaadimist
thumbnail
22
docx

Kõrgem matemaatika 1 kordamisküsimused 2017/2018

Kõrgem matemaatika 1 kordamisküsimused 2017/2018 1. Maatriksi definitsioon. Maatriksi elemendid. Maatriksi järk. Ruutmaatriks. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Vastandmaatriks. Lineaarsete tehete omadused. Transponeeritud maatriks. Maatriks on arvude, funktsioonide või muude elementide korraldatud kogum × . Maatriksil on m rida ja n veergu, kus a11; a12; ...a1n; jne on maatriksi elemendid. Kui me räägime järkudest, siis esimest järku matriks on a, teist on a, a, a, a, kui räägime kolmandat järku siis a,a,a,a,a,a,a,a,a (9) Ruutmaatriksi ridade ja veergude arv on sama. Kui me räägime skalaariga korrutamisest, see tähendab lihtslat arv korrutame matriksiga Maatriksit, milles kõik elemendid on nullid, nimetatakse nullmaatriksiks ja tähistatakse . Maa...

Matemaatika → Kõrgem matemaatika
134 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste. Pöördmaatriksi definitsioon ja elementide leidmise eeskiri. Pöördmaatriksi omadused. 7. Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Vasturääkiv, kooskõlaline, määratu süsteem. Süsteemi maatriks ja laiendatud ma...

Matemaatika → Algebra I
198 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksi...

Matemaatika → Kõrgem matemaatika
94 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun