Mihkel Härm Malmi tootmine ja kasutamine REFERAAT Õppeaines: Tehnomaterjalid Tehnikainstituut Õpperühm: AT12/22 Juhendaja: lektor Annika Koitmäe Esitamiskuupäev: 26.10.2017 Tallinn 2015 Sisukord Sissejuhatus................................................................................................................................3 1.Malmi tootmine........................................................................................................................4 1.1 Valgemalm........................................................................................................................5 1.2 Hallmalm..........................................................................................................................5 1.3 Keragrafiitmalm...........................................................................................
Ahjuväline vakumeerimineseisneb sulatusterasega täidetud kopa asetamises vaakumkambrisse, kus eralduvad metallis lahustunud gaasid, mitmekordselt väheneb mittemetalsete, sulametallis hõljuvate osakeste kogus. Kasutatakse samuti kopast väljavalatava metallijoa vakumeerimist. Vakumeerimine on odav meetod hapnikonverter- ja martäänmeetodiga toodetud terase kvaliteedi tõstmiseks. Ümbersulatamine on sulatuse eriliik, kus tavaliste meetoditega toodetud metall sulatatakse mittesoovitatavate lisandite vähendamise eesmärgil ümber. Ümbersulatamisel vaakumis toimub metalli puhastumine gaasidest ja mittemetalsetest osakestest. 2.4Valuplokkide tootmine Terase tootmismeetodist olenemata valatakse valmis teras valuplokkideks, mis kuuluvad edasiseks töötlemiseks pooltoodeteks peamiselt valtsimise ja sepistamise teel. Valuplokkide saamisel läheb teras vedelast tahkesse olekusse ehk toimub tardumine
Teras
Teras on paljude komponentide sulam, mille põhikomponendid on Fe ja C, 00,3
Terase iseloomustus Teras on sulam, mille põhikomponent on raud ning mis muude elementide (väävel, fosfor jne) kõrval sisaldab kuni 2,14% süsinikku. Kui rauasulamis on üle 2,14 % süsinikku, nimetatakse seda malmiks. Malmil ja terasel on oluline erinevus: terast on võimalik plastselt deformeerida, kuid malmil jääkdeformatsioone ei esine, kuna malm puruneb. Süsinikterased on kõige laiemalt kasutatavad sulamid üldse, kuid vastavalt otstarbele on terase koostis erinev. Kristallstruktuuri järgi võib süsiniku ja raua sulam olla: tsementiit, austeniit, martensiit või perliit. Ühes tükis terases on tavaliselt esindatud kõik kolm. Süsinikusisaldus teeb raua kõvemaks ja suurendab tunduvalt tõmbetugevust, kuid teras on rauast rabedam. Terasesse lisatakse ka teisi keemilisi elemente nagu : · Kroom · Lämmastik · Mangaan · Molübdeen · Nikkel · Nioobium · Tantaal · Titaan · Vanaadium · Vask · Volfram Terase ajalugu Esimesed tera
Ca+2H2O=Ca(OH)2+H2 Keskm. aktiivsusega metallid reag. veeauruga, tekivad oksiid ja H 2 Zn+H2O=ZnO+H2 Väheaktiivsed metallid (alates Ni-st) ei reageeri veega Reageerimine hapetega: (vt. metallide aktiivsuse rida) Vesinikust eespoololevad metallid tõrjuvad hapetest(v.a.HNO 3 ja kontsentreeritud H2SO4) vesiniku välja: Zn+2HCl=ZnCl2+H2 Reageerimine sooladega: (vt. metallide aktiivsuse rida) Metall reageerib vees lahustuva soolaga, kui ta on aktiivsem kui soola koostises olev metall: Zn+CuCl2=ZnCl2+Cu Erandid:Väga aktiivsed metallid(mis reageerivad külma veega) eelistatult reageerivad soola vesilahuses oleva veega, tekitades leelise ja vesiniku ning tekkinud leelis reageerib edasi soolaga: 2Na+CuCl2+2H2O= Cu(OH)2+2NaCl+H2 2Na+ 2H2O=2NaOH+H2 2NaOH+CuCl2=Cu(OH)2+2NaCl Metallide saamine. Kivimeid, mis sisaldavad tootmisväärses koguses metallide ühendeid, nimetatakse metallimaakideks.
METALLID Aktiivsed metallid(IjaII A rühm) reageerivad VIIA rühma metallidega(halogeenidega), hapniku ja väävliga energiliselt juba toatemperatuuril või nõrgal soojendamisel. Vähemaktiivsed metallid reageerivad mittemetallidega alles kuumutamisel. Väärismetallid on oksüdeerumise suhtes vastupidavad. Ei reageeri hapnikuga isegi kuumutamisel. (kuld ja plaatina) Õhu käes seismisel tekib metalli pinnale õhuke oksiidkiht, mistõttu metall muutub tuhmiks. METALLI aatomid loovutavad elektrone, muutudes metalli katioonideks. ON REDUTSEERIJAD. oksüdeerumine. MITTEMETALLI aatomid liidavad elektrone, muutudes anioonideks. ON OKSÜDEERIJAD. Metallide reageerimine teiste ühenditega on alati redoksreaktsioon, kus üks element liidab ja teine loovutab elektrone. Fe + O2 -> Fe3O4 rauatagi FeO . Fe2O3 kuumutades Fe + Cl2 -> FeCl3 sest on tugev oksüdeerija Metallide reageerimine hapetega
Suurim leiukoht maailmas on Kurski oblast. Püriiti (FeS2) tavaliselt rauamaagina ei kasutata , sest väävel halvendab püriidist saadud rauasulamite kvaliteeti. Püriiti kasutatakse väävelhappe tootmisel. Sideriit kujutab endast raudkarbonaati (Fe CO3). Raudkarbonaat reageerib süsinikdioksiidi sisalava veega, muutudes lahustuvaks raudvesinikkarbonaadiks : FeCO3+H2O+CO2=Fe(HCO3)2 Raua füüsikalised ja keemilised omadused Raud on hõbevalge keskmise kõvadusega metall. Lisandid muudavad raua kõvemaks. Raua tihedus on 7874 kg/m3 ja sulamistemperatuur 1539 kraadi. Raud on plastiline , mistõttu teda on võimalik valtsida ning sepistada. Ta on hea soojus- ja elektrijuht. Raud on magnetiseeritav. Raua kristallvõre muutub erinevatel temperatuuridel. Raud on keskmise aktiivsusega metall(asub metallide pingerea keskel). Kuivas õhus ta hapnikuga ei reageeri, kuid niiskuses kattub kergesti roostekihiga. Mida lisanditevabam on metall, seda püsivam on
Vett saab pehmendada destilleerides, kasutades veepehmendajaid (fosfaadid Na 2PO4), ioniide (vahetavad ioone, Ca, Mg → Na, K 9. Katlakivi saab eemaldada spetsiaalsete vahenditega, äädikalahusega. Katlakivi põhjustab ummistusi torudes, halvendab soojusjuhtivust, katelde ja veeboilerite ülekuumenemist 10.Raud – leidub Maa tuumas, 4. Kohal maakoores, Eestis leidub soorauamaaki Fe(OH)3, ehedana leidub meteoriitrauda. Enimkasutatav metall. Omadused: tugev, kõva, puhas Fe ei roosteta, kõrge sulamistemperatuur, d-metall Alumiinium – levikult 3. Kohal maakoores, ehedalt ei leidu, saadakse elektrolüüsi teel. Kasutatakse ehitusmaterjalina, teiste metallide tootmisel. Omadused: hõbevalge, kerge, pehme, hea elektri- ja soojusjuhtivus, ei roosteta, kege toota, p-metall 11. Tina Plii o-a +2/4 o-a +2/4
palju muud. Värvilismetallidest on tuntud vask (Cu) ja tema sulamid, millest valmistatakse peenraha ja tehakse elektrijuhtmeid. Kergmetall alumiiniumist (Al) foolimisse pakitakse toiduaineid, komme ja sokolaadi. Katuseplekina kasutatakse tsingitud (tsingikihiga) (Zn) raudplekki, tinakihiga (Sn) plekkpurkides hoitakse konserve, magneesiumsulamist (Mg) purkides aga karastusjooke ja õlut. Palju haruldasem metall on volfram (W), kuigi seda leidub kõikides ruumides, kus on elektrivalgus. Väärismetallid kuld (Au) ja hõbe (Ag) on ehete valmistamise materjaliks. Kelli kaetakse kroomi- ja niklikihiga. Kroomi (Cr) ja nikli (Ni) sulam on elektriküttekehamaterjal elektripliidis ja triikrauas. Termomeetris kasutatakse mürgist elavhõbedat (Hg). Praegu tuntakse 112 elementi. Inimmõistuse töö tulemusena suureneb elementide arv veelgi. Need uued elemendid on kõik metallilised.
Mida suurem on aatomiraadius, seda väiksem on sulamistemperatuur, sest seda nõrgem side aatomite vahel 2. Metallide keemilised omadused - lihtaine metalli reaktsioonid on redoksreaktsioonid 1) Reageerivad leelistega ● Reageerivad ZN ja Al Zn + KOH + 2H2O -> K [Zn(OH)3] + H2 2Al + 2KOH + 6H2O -> 2K[Al(OH)4 ] + H2 OH järgi tuleb ühe võrra suurem oa, sest k on ka Alumiiniumi puhul reageerib enne oksiid, siis vesinikku ei eraldu, muu on sama. Ja alles siis reageerib metall ise 2) Reageerivad soolalahusega a) Aktiivne metall + soola vesilahus 2K + CuSO4 + 2H2O -> K2SO4 + Cu(OH)2 + H2 1. 2K + H2O -> 2KOH + H2 kõigepealt reageerib veega 2. KOH + CuSO4 -> K2SO4 +Cu(OH)2 b) Ülejäänud metallid alates Mg Aktiivssema metalli aatomid loovutavad oma elektronid vähemaktiivsema metalli katioonile Fe + CuSO4 -> FeSO4 + Cu Fe + Cu -> Fe + Cu NB! Metallidega reageerivad ainult vees lahustuvad soolad
rauast. Tõsi, selle valmistamise juures on rauda kasutatud, kuid lisatud on ka teisi aineid. Nii on saadud teras, millest harilikult ongi noad valmistatud. Kas oskad öelda, millest on valmistatud potid ja pannid teie köögis? Ilmselt arvad ka, et enamus nendest on tehtud rauast. Tegelikult on need kööginõud valmistatud samuti raua ja teiste ainete segudest terasest ja malmist. Terast ja malmi nimetatakase raua sulamiteks. Raud on metall, mida inimene kõige rohkem kasutab. Raud on pärit rauamaagist, mida kaevandatakse suurteskaevandustes. Rauamaagi asukohtileidub palju meile kaugetel maadel: Ameerika mandril ning ka Aasias ja Aafrikas. Raua kättesaamiseks tuleb maaki suurtes sulatusahjudes väga kõrgel temperatuuril kuumutada, et raud maagist välja sulaks. Seejärel tehakse rauast erinevaid sulameid, sest puhtast rauast valmistatud esemed oleks liiga kallid ja ka mitte nii vastupidavad.
koostisse. Inimene tutvus rauaga juba kaugetel aegadel. on alust arvata, et raua proovid, mida hoidsid käes ürginimesed, ei olnud maismaa päritoluga. Olles universumi igaveste rändurite meteoriitide koostises, mis juhuslikult leidsid varjupaiga meie planeedil, oli meteoriitraud selleks materjaliks, millest inimene esmakordselt valmistas raudesemeid. Möödus sadu ja tuhandeid aastaid, enne kui inimene õppis maagist rauda tootma. Sellest momendist algas rauasajand, mis kestab ka käesoleval ajal. Teadlaste hulgas on domineeriv seisukoht, et rauda õppis inimkond tundma umbes 50006000 aastat tagasi. Nagu juba eespool mainitud, esineb raud ehedalt maa peal peamiselt meteoriitse, "kosmilise" rauana. Maailmas kõige suurem raudmeteoriit, mida vaadeldi langemisel, asub Moskvas (1966. aasta andmed). Meteoriit purunes langemisel 18. oktoobril 1916. a. Boguslavski küla lähedal KaugIdas
• Sulam on kahe või enama metalli või metalli ja mittemetalli kokku sulatamisel saadud aine. Jahtumisel moodustavad nad tahke sulami. Kokku ei ole võimalik sulatada metalle, mille sulamistemperatuuride vahe on suur. • Sulameid kasutatakse laialdaselt sellepärast, et nad on tavaliselt kõvemad lähtemetallidest, püsivamad välistingimuste suhtes ja sulavad madalamal temperatuuril kui neid moodustavad metallid. Ning tihtipeale on nad ka odavamad. • Kõige tuntum metall on raud ja tema sulamid- teras ja malm. Rauast ja tema sulamitest valmistatakse tööriistu, autosid, ronge, tööstusseadmeid jne. Malmist valmistatakse ka radiaatoreid, sest malm on hea soojusjuhtivusega. Kulla ja hõbeda sulameid on aastasadu kasutatud ehete valmistamiseks (nt: kaelakeed, käeketid, kõrvarõngad jne). Peeglites kasutatakse samuti hõbedat, sest tal on hea peegeldusvõime. • Tähtsamad sulamid: • Teras on raua ja süsiniku sulam, milles on
Raua oksüdeerimusel tekivad raua ioonid, mis lähevad lahusesse. Levinumaks osküdeerijaks tavatingimustes on õhuhapnik. Happelises lahuses on peamiseks oksüdeerijaks vesinikioonid. Metallide korrosiooni kiirust mõjutavad tegurid: Metalli korrosiooni kiirus sõltub nii metalli iseloomust kui ka välistingimustest: temperatuurist , elektrolüüdi lahuse koostisest, õhuhapniku juurdepääsust, metallis leiduvatest lisanditest jms. Mida happelisem on lahus seda kiirem on korrosioon. Metall, mis sisaldab lisandina vähemaktiivseid lisandeid korrodeerub kiiremini kui puhas metall. Korrosiooni võivad soodustada ka lahuses esinevad lisandid. Metalle saab kaitsta korrosiooni eest katmisel värvi, laki või püsivama metalli kihiga jt. meetoditel. Metallide saamine maagist Kõige aktiivsemad metallid, mis moodustavad valdavalt ioonseid ühendeid, esinevad looduses põhiliselt mitmesuguste sooladena. Leelismetallid esinevad sageli kloriididena,
Teras ja malm. Terase tootmine: Terase tootmisel tuleb osa süsiniku jt lisandelementidega malmist malmist kõrvaldada. Süsiniku eraldamiseks kasutatakse õhku või hapnikku. Õhuhapniku arvel põleb malmis sisalduv süsinik süsinikoksiidiks CO või süsinikdioksiidiks CO2. Käsitleme lühidalt terase tootmist hapnikukonverterites ja elektrienergia kasutamisel kaarleekahjus. Terase tootmine hapnikkonverterites: Hapnikukonverteris olevasse sulamalmi juhitakse ülevalt hapnikku. Hapniku kui tugeva oksüdeerija mõjul toimub süsiniku jt lisandmetallide väkjapõletamine kiiresti. Seejuures eraldub nii palju soojust, et toimub konvertis, mõnekümne minuti jooksul. Terase tootmine kaarleekahjus: Kaarleekahjus saab töödelda nii vanarauda, malmi kui ka rauamaaki. Kaarleekahjus tekitatakse süsi- või grafiitelektroodide ja ahju täidise vahele
Sisukord Sisukord 2 Sissejuhatus 3 Jagunemine 3 Mustad metallid 3 Malm 4 Teras 5 Kasutatud materjalid 6 1 2 Sissejuhatus Metallideks nimetatakse keemilisi elemente, millel on vabu elektrone ja mis tahkes olekus moodustavad niinimetatud metallilise võre, mis annab neile iseloomuliku metallilise läike, hea elektrijuhtivuse ning soojusjuhtivuse ja on ka enamikus hästi sepistatavad. Metallidel kui lihtainetel on teatud iseloomulikud füüsikalised omadused: nad on tavaliselt läikivad, suure tihedusega, venitatavad ja sepistatavad, tavaliselt kõrge sulamistemperatuuriga, tavaliselt kõvad, juhivad hästi elektrit ja soojust. Need omadused tulenevad põhiliselt sellest, et metalliaatomi väliskihi elektronid (valentselektronid) ei ole aatomiga tugevalt seotud, mis on tingitud nende madalast ionisatsioonienergiast. Enamik metalle on keemiliselt aktiivsed. Jagunemine
Paide Ühisgümnaasium Väärismetallid Referaat Koostaja: Henry Luts, 9a Paide, 2008 Sissejuhatus Väärismetallid on haruldased metallid, mida peitub maakoores suhteliselt vähe ja millel on kõrge väärtus. Väärismetallide mõiste on läbi teinud pika ajaloolise arengu. Mõnigi nüüdisaja argielu metall (raud, alumiinium) on kunagi olnud väärismetalli seisuses. Tänapäeval loetakse väärismetallideks kulda, hõbedat, plaatinat, pallaadiumi ja nende sulameid. Keemia seisukohalt on väärismetallid ka vask ja elavhõbe. Väärismetallideks loetakse ka plaatinametalle. Plaatinametallid on plaatina ja 5 sellele keemilistelt omadustelt lähedast metalli. Need metallid on iriidium, osmium, palladium, ruteenium ja roodium. 19. Sajandil oli väga kõrge hinnaga väärismetall alumiinium
elektrokeemiline korrosioon: on seotud galvaaniaelementide tekkimisega, toimub kui kaks erinevat metalli on kontaktis elektrolüüdi lahusega (juhib elektrit) maak:kivim või mineraal, mis on mingi lihtaine saamisel tooraineks metallurgia: metallide ja sulamite tootmine metallimaakidest särdamine: mitteoksiidsete maakide kuumutamine õhu juuresolekul, et saada oksiidne maak (metallide tootmisel maagist, pärast seda viiakse läbi redutseerimine) redutserimine: metalli saamine maagis sisalduva metalliühendi redutseerimisel (aluminotermia, karbotermia) maagi rikastamine: maak vabastatakse lisanditest, kasutades füüsikalise omaduste erinevust karbotermia: metalli redutseerimine maagist süsiniku või süsinikoksiidi abil kõrgel temperatuuril (kõrgahju protsess reageerimine CO-ga) Fe2O3 + 3CO = 2Fe + 3CO
Raud. Fe. Ferrum Raud (Ferrum) on keemiline element järjenumbriga 26. Raud asub Perioodilisussüsteemi VIII B rühmas ja 4. perioodis. Tal on neli stabiilset isotoopi massiarvudega 54, 56, 57 ja 58. Omadustelt on raud metall. Normaaltingimustel on raud tahke aine tihedusega 7,87 g/cm 3. Raua sulamistemperatuur on 1535 Celsiuse kraadi. Raud esineb madalal rõhul nelja kristallmodifikatsioonina olenevalt temperatuurist. Raud on inimesele tuntud väga ammu. Oli ju pärast pronksiaega rauaaeg, mis Eestiski algas juba e. m. a. Metallidest on levikult raud teisel kohal pärast alumiiniumi, kuid toodangult esikohal, sest on kõige kättesaadavam metall.
2. keskmised H2SO3, H3PO4, HNO2 3. nõrgad H2S, H2CO3 2. vesinike arvu järgi 1. üheprootonilised HNO3, HCl 2. mitmeprootonilised H2SO3, H3PO4 3. hapniku sisaldavuse järgi 1. hapnikku sisaldavad happed H2SO3, H3PO4 4. hapnikku mitte sisaldavad happed HCl, HBr, HI Keemilised omadused: 1. hape + ALUS = sool + vesi 2HCl + Mg(OH)2 = MgCl2 + 2H2O 2. hape + ALUSELINE OKSIID = sool + vesi 2HCl + MgO = MgCl2 + H2O 3. hape + METALL = sool + vesinik (vt. pingerida) (va. HNO3 ja konts. H2SO4 puhul ei redutseeru vesinikioon) 2HCl + Mg = MgCl2 + H2 4. hape + SOOL = uus sool + nõrgem või lenduvam hape 2HCl + Na2S = 2NaCl + H2S 5. hapnikhape = vastav oksiid + vesi H2CO3 = CO2 + H2O Saamine: 1. hapnikhappeid saadakse vastava happelise oksiidi reageerimisel veega. (va. Ränihapet) N: SO3 + H2O = H2SO4 2. hapnikku mittesisaldavaid happeid saadakse 5
vastupidi. Aktiivsete metalliliste elementide oksiidid on tugevalt aluseliste omadustega, vähemaktiivsete metalliliste elementide oksiidid on enamasti nõrgalt aluseliste omadustega. Mittemetalliliste elementide oksiidid on enamasti happeliste omadustega (v.a üksikud erandid). Elementide metalliliste omaduste nõrgenedes ja mittemetalliliste omaduste tugevnedes oksiidide aluselised omadused nõrgenevad ja happelised omadused tugevnevad. Mida enam vasakul metall pingereas asub, seda: suurem on ta keemiline aktiivsus, seda kergemini ta oksüdeerub, loovutab elektrone. suurem on ta redutseerimisvõime; raskemini redutseeruvad metallioonid. Pingerea iga metall tõrjub kõik temast paremal asuvad metallid nende soolade lahustest välja. Näide: Zn + HCl ZnCl2+ H2 lahja H2SO4 ja sulfaadid väga nõrgad oksüdeerijad, oksüdeerimisvõime kasvab happesuse suurenemisega Metallid (aatomi väliskihil elektrone suht. vähe) käituvad keemilistes reaktsioonides
METALLIDE SAAMINE. Üle 80% kõikidest elementidest on metallid. Mõned neist, näiteks kuld ja plaatina esinevad looduses ehedana, enamik metalle on looduses aga ühenditena. Looduslikud mineraalse tooraine mitmesuguseid liike, mis kõlbavad vabade metallide saamiseks tööstuslikus mastaabis, nimetatakse maakideks. Metallide saamiseks maakidest on mitu meetodit. Tähtsama neist on : 1) Metallide oksiidide redutseerimine söe või süsinikoksiidi abil. Raua tootmine oksiididest põhineb näiteks süsinikoksiidiga redutseerimise reaktsioonil. Fe2 O 3+3 CO=2 Fe+3 Co2 2) Metallide oksiidide redutseerimine aktiivsemate metallidega. Seda meetodit nimetatakse metallotermiaks. Tänapäeval kasutatakse metallotermiat peamiselt raskesti sulavate metallide saamisel. Näiteks tekib kroom (III) oksiidi ja alumiiniumi segu kuumutamisel: Cr 2 O 3 +2 Al= Al 2 O 3 +2 Cr
pruunikaks. FeSO4*7H2O raudvitriol (raud(III)sulfaat-vesi) - kasutatakse taimekaitsevahendina seenhaiguste tõrjeks - kasutatakse peitsina riide värvimisel - kasututakse keeduvärvide valmisstamisel FeCl3 raud(III)kloriid on punakaspruun väga hügroskoopne aine. Kasutatakse metallide söövitamisel. Raua keemilised omadused Puhas raud on must, pehme, keemiliselt väheaktiivne metall. Lisandeid sisaldav raud roostetab niiskes õhus kiiresti. 4Fe+2O2 + nH2O-> 2Fe2O3*nH2O (rauarooste) Kuivas õhus katub raud musta segaoksiidi kihiga(rauatagiga), mis kaitseb rauda edasise oksüdeerumise eest ( näiteks sepistatud raudesemed). 3Fe+2O2 -> Fe3O4 Aktiivse etallina reageerib raud lahjendatud hapetega: Fe+2HCl -> FeCl2 + H2 Raua tootmine Raud redutseeritakse maagist CO (süsinikoksiid, vingugaas) abil.
* Alused on ainsed, mis annavad vesilahusesse hüdroksiidioone tüüpilised alused on hüdroksiidid, mis koosnevad metalliioonidest ja hüdroksiidioonidest. -) Leelis vees lahustuv alus (ka vähelahustuv) ja nad on tugevad alused. -) Raskelahustuvad alused vees ei lahustu ja nad on nõrgad alused. * Soolad koosnevad aluse katioonist ja happe anioonist. * Lihtsoola happeanioonis puudub vesinik ja vesiniksoolas on vesinik, kristallhüdraatidesse kuuluvad ka vee molekulid. * Metall + sool = sool + metall sool lahustuv ja metall aktivsem kui soola koostises olev metall (metall ei tohi olla IA ega IIA Ca ja sellest allpool) - redoksreaktsioon * Sool + sool = sool + sool lähtesoolad peavad lahustuma ja saadustest vähemalt üks lahustumatu (märgitakse nool allapoole). * Sool + hape = sool + hape tekib võetud happest nõrgem hape või sade. * Vees lahustumatud soolad lagunevad kuumutamisel oksiidideks. Elektrolüüdid
metalne läige enamasti hallikas värvus 7.Metallide keemilised omadused (reageerimine hapnikuga, väävliga,halogeenidega, veega, hapete lahustega, soolalahustega) Metallid on reaktsioonides alati redutseerijad (loovutavad elektrone) Reageerivad veega väh. akktiivsed met.(Ni-Au) ei reagereeri veega 8.Redutseerija ja oksüdeerija määramine redoksreaktsioonis(oksüdatsiooniastmete muutumise järgi). Vihikus! 9.Selgita, mida tähendab metallimaagi rikastamine. Maak vabastatakse kõrvalainetest kasutades füüsikaliste omaduset erinevust 10.Selgita, mis on metallimaagi särdamine? Mitteoksiidsete maakida kuumutamine õhu juuresolekul, et saada oksiidide maak 11.Milliseid aineid kasutatakse metallimaakidest metalliväljaredutseerimiseks? Koksi Süsinikmonoksiid Vesinik Alumiinium 12.Mis on malm ja millest see koosneb? Malm on eelkõige vahesaadus maagist terase tootmisel, see koosneb süsinikkust ja teistest ainetest 13
happe anioonidest redutseerija: aine, mille osakesed loovutavad elektrone, ise oksudeerub oksüdeerumine: elektronide loovutamine redoksreaktsioonis, elemendi o.a- suurenemine leelismuldmetall: IIA rühma elemendid katioon: positiivse laenguga ioon korrosioon: metalli hävimine (oksüdeerumine) keskkonna toimel Metall oksüdeerub keskkonnas oleva oksüdeerija toimel metalliühendiks (loovutab elektrone) oksüdeerija: aine, mille osakesed liidavad elektrone (ise redutseerudes) redoksreaktsioon: keemiline reaktsioon, milles toimub elektronide üleminek ühtedelt osakestelt teisele, sellega kaasneb elementide o.a- muutus leelismetall: IA rühma metallid, kõige aktiivsemad siirdemetallid: B-rühma metallid
Keemia 8 klass Redoksreaktsioonid Mati unustas banaani mõneks päevaks laua peale seisma. Ükskord kui talle see meelde tuli, oli avastus suur- banaani koor oli kollase asemel pruunikaks muutunud. Matil tekkis küsimus: Miks? Mis toimub? Joonis 1.Banaani tumenemine õhu käes on redoksreaktsioon Redoksreaktsioonidega puutume kokku igal sammul: elusorganismide hingamine kütuse põlemine automootoris metalli tootmine maagist raua roostetamine Fotosüntees kõdunemine mobiiltelefoni akus toimuvad protsessid haavade puhastamine vesinikperoksiidiga värskete puuviljade tumenemine õhu käes(joonis 1) Mõisted Redoksreaktsioon- protsess, kus elementide oksüdatsiooniastmed muutuvad Redoksreaktsioonist võtavad osa: I) redutseerija-aine, mis loovutab elektrone, oksüdatsiooniaste kasvab Järgmiste näitede abil püüame selgeks teha, millised ained käituvad
KEEMIA KT METALLID Metallide reageerimine mittemetallidega Aktiivsed metallid reageerivad halogeenide, hapniku ja väävliga energiliselt juba toatemperatuuril või nõrgal soojendamisel. Vähemaktiivsed metallid reageerivad mittemetallidega enamasti alles kuumutamisel. Väärismetallid reageerivad vähe. Redutseerija (aine, mille osakesed loovutavad elektrone) on metall. Redutseerimine- elektronide liitumine redoksreaktsioonis, elemendi oks. aste väheneb Oksüdeerija (aine, mille osakesed liidavad elektrone) on mittemetall. Oksüdeerimine- elektronide loovutamine redoksreaktsioonis, elemendi oks.aste kasvab. Redoksreaktsioon- keemiline reaktsioon, milles toimub elektronide üleminek ühtedelt osakestelt teistele, sellega kaasneb elementide oksüdatsiooniastme muutus. Metallide reageerimisel hapnikuga tekivad oksiidid.
Elektrolüüs-elektrivoolu läbijuhtimine lahusest või sulatatud elektrolüüdist elekroodidel kulgev reaktsioon. Korrosioon- metalli hävimine keskkonna toimel. Aluminotermia-lihtainete saamine ühenditest alumiiniumiga redutseerimise teel. Karbotermia-metalli redutseerimine maagist süsiniku või süsinikoksiidi abil kõrgel temperatuuril. Särdamine-maagi kuumutamine õhuhapniku juuresolekul, et viia nendes sisaldavad ühendid üle oksiidideks. Maagi rikastamine-maak vabastatakse lisanditest kasutades füüsikaliste omaduste erinevust. Akumulaator-korduvalt kasutatav keemiline vooluallikas (pliiaku). Keemiline vooluallikas-seade, milles keemilises reaktsioonis vabanev energia muudetakse vahetult elektrienergiaks.
Maagikontsentraatidele lisatakse sageli SiO2 ja allutatakse korduvalt paagutamisele ning sulatamisele (sulfiidid redutseeruvad, tekkiv raudoksiid läheb silikaadi moodustumisel räbu koostisesse). Järgneb keerukate sulfiidide (Ni3S2, CuS jt) ning metallide (Ni, Cu) segu eraldamine, mis sisaldab sulatamist NaHSO4-ga jt töötlusi. Lõppfaasis eraldatakse nikkel sageli elektrolüüsiga. Omadused ja ühendid Nikkel on lihtainena hõbevalge, kollaka läikega plastne metall. Ta on hästi töödeldav, kuid juba vähesed lisandid, eriti väävel ja hapnik, halvendavad oluliselt mehaanilisi omadusi ja korrosioonikindlust. Nikkel on ferromagneetik, Curie’ punkt on 631K. Keemiliselt on kompaktne nikkel väheaktiivne, õhus püsiv. Metall kattub õhus NiO kaitsekihiga ning on püsiv kuni umbes 800 °C. Hapetega H2SO4, HCl, H3PO4 ja HF reageerib nikkel väga aeglaselt, kuid reageerib kergesti lahja HNO3-ga, kontsentreeritud HNO3 toimel passiveerub.
kus nikli reageerimisel vingugaasiga saadakse gaasiline Ni(CO)4, mis seejärel lagundatakse. 3 Asend perioodilisussüsteemis ja aatomi ehitus Keemiliste elementide perioodilisussüsteemis VIII rühma element. Periood: Järjekorranumber 28. Aatommass 58,69. Ni +28| 2) 16) 8) 2) 4 Omadused Oksiidi tüüp: nõrkaluseline Lihtainena hõbevalge Kollaka läikega plastne metall Ta on hästi töödeldav Keemiliselt on kompaktne nikkel väheaktiivne, õhus püsiv Tihedus normaaltingimustel on 8,9 g/cm3 Sulamistemperatuur on 1455 °C ja keemistemperatuur 2913 °C. 5 Kasutamine Rõhuv enamus nikli toodangust kasutatakse ära nii raua kui ka värviliste metallide sulamite koostises Mõni protsent nikli toodangust kasutatakse katalüsaatorite saamiseks, mida rakendatakse sünteesikeemias ja toiduainetööstuses
KORDAMISKÜSIMUSED 10. klass – KONTROLLTÖÖ nr 5 1. Metallide korrosioon? Kuidas kaitsta metalle korrosiooni eest? 2. Mis on keemiline korrosioon? 3. Metallide saamine maagist? Kirjelda raua tootmist. 4. Keemilised vooluallikad. Nimeta neid ja kuidas need töötavad? 5. Elektrolüüs. Kuidas toimub elektrolüüs? 6. Leelis- ja leelismuldmetallid. Nende keemilised omadused. Nende ühendite kasutamine igapäevaelus (kus ja milleks). Nende metallide ühenditega keemiliste reaktsioonide koostamine. 7. p-metallid (Al, Sn, Pb). Nende keemilised omadused. Nende ühendite kasutamine igapäevaelus (kus ja milleks).
KEEMIA KT Mõisted 1) Redutseerija on aine, mille osakesed loovutavad elektrone (ise oksüdeerudes). On metall. (KATOOD) 2) Oksüdeerija on aine, mille osakesed liidavad elektrone (ise redutseerudes). (ANOOD) 3) Metallid on kergesti töödeldavad, nad on plastilised. 4) Elektrolüüs on elektrivoolu toimel aine saamine. Aine lagundamine elektrivoolu toimel. Elektrolüüsi korral toimuvad redutseerumine ja oksüdeerumine eraldi elektroodidel. Elektroodi, millel toimub redutseerumine, nimetatakse katoodiks, elektroodi, millel toimub oksüdeerumine, nimetatakse anoodiks. 5)