Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Raua tootmine maagist - sarnased materjalid

maagis, metall, koksi, maagist, redutseerimine, süsinikoksiidi, malm, maaki, metallioksiid, väävel, malmiks, maakidest, rikastamine, särdamine, fe3o4, kasutamisel, fe2o3
thumbnail
8
odt

Kõrgahju bilanss

oksiidideks- seda protsessi kutsutakse särdamiseks ja sisuliselt on tegemist põletamisega. Näiteks 2 ZnS + 3 O2 = 2 ZnO + 2 SO2 Vääveldioksiid tõõdeldakse kaasajal ümber väävelhappeks. Atmosfääri teda lasta ei tohi - happevihmad Maakide redutseerimiseks on kasutusel kolm meetodite gruppi Vanimaks ja kõige levinumaks metallurgiaharuks on pürometallurgia (püro tähendab ladina keeles leeki). Siin sulatatakse metall maagist välja kõrge temperatuuriga. See kõrge temperatuuriga leek saadakse kütuste põletamisel. Nii toodetakse rauda ja tema sulameid, vaske jne. Nagu me eelnevast teame, esineb raud rauamaakides oksiidina. Sellest tuleb raud välja redutseerida. Selleks kasutatakse enamasti koksi - seega sütt või süsinikoksiidi: Fe3O4+ 4C = 3Fe + 4CO Fe2O3 + 3CO = 2Fe + 3CO2 Täiesti puhast rauda pole võimalik nii toota, ikka sisaldab ta mõningal määral süsinikku.

Auto õpetus
41 allalaadimist
thumbnail
14
doc

Raud

koostisse. Inimene tutvus rauaga juba kaugetel aegadel. on alust arvata, et raua proovid, mida hoidsid käes ürginimesed, ei olnud maismaa päritoluga. Olles universumi igaveste rändurite ­ meteoriitide koostises, mis juhuslikult leidsid varjupaiga meie planeedil, oli meteoriitraud selleks materjaliks, millest inimene esmakordselt valmistas raudesemeid. Möödus sadu ja tuhandeid aastaid, enne kui inimene õppis maagist rauda tootma. Sellest momendist algas rauasajand, mis kestab ka käesoleval ajal. Teadlaste hulgas on domineeriv seisukoht, et rauda õppis inimkond tundma umbes 50006000 aastat tagasi. Nagu juba eespool mainitud, esineb raud ehedalt maa peal peamiselt meteoriitse, "kosmilise" rauana. Maailmas kõige suurem raudmeteoriit, mida vaadeldi langemisel, asub Moskvas (1966. aasta andmed). Meteoriit purunes langemisel 18. oktoobril 1916. a. Boguslavski küla lähedal KaugIdas

Keemia
163 allalaadimist
thumbnail
10
ppt

METALLIDE SAAMINE MAAKIDEST

METALLIDE SAAMINE MAAKIDEST Maak→rikastatud maak→metallioksiid→metall Kogu protsess on väga energiamahukas. Ühendis sidemete lõhkumiseks tuleb kulutada Energiat. 1. Maagi rikastamine: maak vabastatakse kõrvalainetest kasutades füüsikaliste omaduste erinevust. 2. Särdamine: mitteoksiidsete maakide kuumutamine õhu juuresolekul, et saada oksiidne maak. 2PbS+3O2=2PbO+2SO2 3. Metalli redutseerimine metallioksiidist: Redutseerijana kasutatakse: a) koksi (C) (kõige odavam) Fe3O4+4C=3Fe+4CO b) süsinikmonooksiidi (CO), mis tekib ka koksi kasutamisel Fe2O3+3CO=2Fe+3CO2 c) vesinikku (väga puhaste metallide saamiseks) CuO+H2=Cu+H2O d) alumiiniumi (aluminotermia), kui on metalli vaja toota rasksulavast maagist Cr2O3+2Al=2Cr+Al2O3 Aktiivseid metalle saadakse sulandite elektrolüüsil: Sulatatud keedusoolast elektrivoolu läbijuhtimisel saadakse Na: 2NaCl=2Na+Cl2 Sulatatud boksiidist saadakse elektrivoolu

Füüsika
11 allalaadimist
thumbnail
4
docx

Metallurgia

Tuntakse kolme erinevat metallide tootmise viisi: 1. Haruldasi ja värvilisi metalle toodetakse kloormetallurgiliselt. Sel juhul töödeldakse toormaaki klooriga. Metallid reageerides klooriga muutuvad kloriidideks, sellisel kujul nad eraldatakse ja seejärel töödeldakse puhtaks metalliks. Nii toodetakse titaani, tantaali, tina jne. 2. Hüdrometallurgia põhineb maakide töötlemisel niisuguste kemikaalide lahustega (hapete, leeliste), mis maagis oleva metalliga reageerides viivad selle ioonidena lahusesse. Lahuse järgneval töötlemisel eraldatakse metall sellest lihtainena. 3. Vanimaks ja kõige levinumaks metallurgiaharuks on pürometallurgia (püro tähendab ladina keeles leeki). Siin sulatatakse metall maagist välja kõrge temperatuuriga. See kõrge temperatuuriga leek saadakse kütuste põletamisel. Nii toodetakse rauda ja tema sulameid, vaske jne. Nagu me eelnevast teame, esineb raud rauamaakides oksiidina

Ehitus alused
29 allalaadimist
thumbnail
3
doc

Raud

o Mustas rauamaagis ehk magnetiidis aga Fe3O4. o Magnetiidi nimetus tuleb tema magnetilistest omadustest. o Varem oodeti Eesti rauda soorauamaagist (sisaldab rauda pealmiselt hüdroksiidina). o Rauda leidub ka vere punalibledes. o Raud kuulub siirdemetallide hulka. o Raud kuulub keskmise aktiivsusega metallide hulka. o Väga puhas raud on vee ning õhuhapniku suhtes küllaltki vastupidav. Raua füüsikalised omadused: · Hõbehall läikiv metall · Suhteliselt raske (tihedus 7,9 g/cm3) · Kõrge sulamistemperatuuriga (~ 7540º C) · Mehhaaniliselt hästi töödeldav · Suhteliselt kõva · Magnetiliste omadustega Raua oksüdatsiooniaste II tekib, kui raua aatomid loovutavad oma väliskihi elektronid. Fe ­ 2e- Fe2+ Fe2+: +26 | 2)8)14) Raua oksüdatsiooniaste III tekib, kui aatomid loovutavad ka eelviimaselt kihilt ühe eletroni Fe ­ 3e- Fe3+ Fe3+: +26 | 2)8)13)

Keemia
81 allalaadimist
thumbnail
32
doc

Metallurgia-kõrgahju tehnoloogia

1. Haruldasi ja värvilisi metalle toodetakse kloormetallurgiliselt. Sel juhul töödeldakse toormaaki klooriga. Metallid reageerides klooriga muutuvad kloriidideks, sellisel kujul nad eraldatakse ja seejärel töödeldakse puhtaks metalliks. Nii toodetakse titaani, tantaali, tina jne. 2. Hüdro metallurgia põhineb maakide töötlemisel niisuguste kemikaalide lahustega (hapete, leeliste), mis maagis oleva metalliga reageerides viivad selle ioonidena lahusesse. Lahuse järgneval töötlemisel eraldatakse metall sellest lihtainena. 3. Vanimaks ja kõige levinumaks metallurgiaharuks on püro metallurgia (püro tähendab ladina keeles leeki). Siin sulatatakse metall maagist välja kõrge temperatuuriga. See kõrge temperatuuriga leek saadakse kütuste põletamisel. Nii toodetakse rauda ja tema sulameid, vaske jne.

Tehnoloogia
9 allalaadimist
thumbnail
2
doc

Raud ja Alumiinium

Raud Raud (ferrum) on keemiline element järjenumbriga 26. Raud asub perioodilisussüsteemi VIII B rühmas ja 4. perioodis. Tal on neli stabiilset isotoopi massiarvudega 54,56,57 ja 58. Omaduselt on raud metall. Raud on kõige levinum element Maa koostises ning levimuselt maakoores metallidest alumiiniumi järel teisel kohal. Raua füüsikalised omadused Raud on hõbevalge keskmise kõvadusega metall. Lisandid muudavad raua kõvemaks. Raua tihedus on 7874kg/m3 Raua sulamistemperatuu on 1535 kraadi. Raud muutub kuumutamisel palstiliseks, milletõttu seda on võimalik sepitseda ja valtsida. Ta on hea soojus- ja elektrijuht. Raud on magnetiseeritav. Raua keemilised omadused Raud on keemiliselt keskmise aktiivsusega metall. Raua kristallvõre muutub erinevatel tempareatuuridel. Kuivas õhus ta hapnikuga ei reageeri, kuid niiskuses kattub kergesti roostekihiga.

Keemia
25 allalaadimist
thumbnail
28
pptx

Metallid

• Sulam on kahe või enama metalli või metalli ja mittemetalli kokku sulatamisel saadud aine. Jahtumisel moodustavad nad tahke sulami. Kokku ei ole võimalik sulatada metalle, mille sulamistemperatuuride vahe on suur. • Sulameid kasutatakse laialdaselt sellepärast, et nad on tavaliselt kõvemad lähtemetallidest, püsivamad välistingimuste suhtes ja sulavad madalamal temperatuuril kui neid moodustavad metallid. Ning tihtipeale on nad ka odavamad. • Kõige tuntum metall on raud ja tema sulamid- teras ja malm. Rauast ja tema sulamitest valmistatakse tööriistu, autosid, ronge, tööstusseadmeid jne. Malmist valmistatakse ka radiaatoreid, sest malm on hea soojusjuhtivusega. Kulla ja hõbeda sulameid on aastasadu kasutatud ehete valmistamiseks (nt: kaelakeed, käeketid, kõrvarõngad jne). Peeglites kasutatakse samuti hõbedat, sest tal on hea peegeldusvõime. • Tähtsamad sulamid: • Teras on raua ja süsiniku sulam, milles on

Kuld ja alkeemia
7 allalaadimist
thumbnail
2
pdf

Raud

Rauamaak Rauamaak on kivim või mineraal, mis sisaldab rauda (kevandamine on majanduslikult tasuv). Rauamaagiks nimetatakse ka rauda sisaldavat kivimkeha (kaevandamine ei ole majanduslikult tasuv). Eestis leidub rauamaaki Ida-Virumaal. Kõige rohkem leidub rauamaaki Hiinas (23.35%), Austraalias (18.34%) ja Brasiilias (18.34%). Raua tootmine Rauda toodetakse rauamaagist erilistes suurtes ahjudes, mida nimetatakse kõrgahjudeks. Kõrgahjus toimub raudoksiidi redutseerimine süsinikoksiidi abil. Kõrgahju põhikamber täidetakse kindla koguse rauamaagi, koksi ja lubjakiviga. Kõrgahju põhjast puhutakse sisse kuum õhk. Kuum õhk süütab koksi ja tekib süsinikmonooksiid. Põlev koks kuumutab ahju põhjas oleva sisu enam kui 1600º C. Sellel temperatuuril reageerib raudoksiidis seotud hapnik süsinikmonooksiidiga, vabastades rauamaagist rauda. Vedel raud valgub ahju põhja ja lastakse välja iga kolme või nelja tunni järel. Lubjakivi reageerib rauamaagis olevate

Keemia
1 allalaadimist
thumbnail
28
pptx

Metallid

Reageerimine veega: 2Na + 2H2O ---> 2NaOH + H2 Reageerimine soola lahustega: 2Fe + 3Cl2 ---> 2FeCl Reageerimine mittemetallidega: 4Al + 3O2 ---> 2Al2O Metallide redutseeriv toime väheneb metallide aktiivsuse reas vasakult paremale. Need metallid, mis paiknevad vesinikust vasakul, võivad lahjendatud hapetest vesiniku välja tõrjuda. Näiteks Cu, Hg, Ag, Pt, Au ei reageerigi lahjendatud hapetega ning need paiknevad vesinikust paremal. Iga metall võib välja tõrjuda teise metalli selle soola vesilahusest, kui ta paikneb soola moodustavast metallist vasakul. http://www.chemicum.com/?video=50&lan=EE Metallide korrosioon Korrosioon ehk korrodeerumine on keemilise aine, Aeglustada saab kivimi, koe või materjali, enamasti metalli osaline hävin mitmel viisil: keskkonnas toimuvate keemiliste reaktsioonide tõttu. Korrosioon on raua roostetamine, vase kattumine

Füüsika
5 allalaadimist
thumbnail
6
doc

Bessemerprotsess

Rauda on kõige rohkem maksas ja põrnas. Raud on vajalik ka taimedele. Ta võtab osa protoplasma oksüdeerimisprotsessidest, taimede hingamisest ja klorofülli ehitamisest. Rauda õppis inimkond tundma umbes 5000-6000 aastat tagasi. Esimesed raua proovid, mida hoidsid käes ürginimesed, ei olnud maismaa päritoluga. See oli meteoriitraud, millest inimene esmakordselt valmistas raudesemeid. Möödus tuhandeid aastaid enne kui inimene õppis maagist rauda tootma. Sellest momendist algas rauasajand, mis kestab ka käesoleval ajal. Raua kasutamine Rauda hakkasid esimestena laialdaselt kasutama Väike-Aasias elanud hetiidid, kes umbes 3400 aastat tagasi valmistasid rauast majapidamisesemeid (katlaid) ja sõjariistu (mõõku, odasid, kilpe ja nooleotsi). Raudrelvad olid vastupidavamad ja paremad kui pronksrelvad. Eestis on vanimad raudesemed leitud Kohtla-Järve lähedalt ja need pärinevad 1

Ajalugu
9 allalaadimist
thumbnail
8
doc

Metallurgia

Tuntakse kolme erinevat metallide tootmise viisi: 1. Haruldasi ja värvilisi metalle toodetakse kloormetallurgiliselt. Sel juhul töödeldakse toormaaki klooriga. Metallid reageerides klooriga muutuvad kloriidideks, sellisel kujul nad eraldatakse ja seejärel töödeldakse puhtaks metalliks. Nii toodetakse titaani, tantaali, tina jne. 2. Hüdrometallurgia põhineb maakide töötlemisel niisuguste kemikaalide lahustega (hapete, leeliste), mis maagis oleva metalliga reageerides viivad selle ioonidena lahusesse. Lahuse järgneval töötlemisel eraldatakse metall sellest lihtainena. 3. Vanimaks ja kõige levinumaks metallurgiaharuks on pürometallurgia (püro tähendab ladina keeles leeki). Siin sulatatakse metall maagist välja kõrge temperatuuriga. See kõrge temperatuuriga leek saadakse kütuste põletamisel. Nii toodetakse rauda ja tema sulameid, vaske jne. Nagu me eelnevast teame, esineb raud rauamaakides oksiidina

Auto õpetus
63 allalaadimist
thumbnail
3
doc

Enim levinud metallid ja metallide saamine

Ca+2H2O=Ca(OH)2+H2 Keskm. aktiivsusega metallid reag. veeauruga, tekivad oksiid ja H 2 Zn+H2O=ZnO+H2 Väheaktiivsed metallid (alates Ni-st) ei reageeri veega Reageerimine hapetega: (vt. metallide aktiivsuse rida) Vesinikust eespoololevad metallid tõrjuvad hapetest(v.a.HNO 3 ja kontsentreeritud H2SO4) vesiniku välja: Zn+2HCl=ZnCl2+H2 Reageerimine sooladega: (vt. metallide aktiivsuse rida) Metall reageerib vees lahustuva soolaga, kui ta on aktiivsem kui soola koostises olev metall: Zn+CuCl2=ZnCl2+Cu Erandid:Väga aktiivsed metallid(mis reageerivad külma veega) eelistatult reageerivad soola vesilahuses oleva veega, tekitades leelise ja vesiniku ning tekkinud leelis reageerib edasi soolaga: 2Na+CuCl2+2H2O= Cu(OH)2+2NaCl+H2 2Na+ 2H2O=2NaOH+H2 2NaOH+CuCl2=Cu(OH)2+2NaCl Metallide saamine. Kivimeid, mis sisaldavad tootmisväärses koguses metallide ühendeid, nimetatakse metallimaakideks.

Keemia
132 allalaadimist
thumbnail
4
docx

Mmetallide saamine, korrosioon ja sulamid

elektrokeemiline korrosioon: on seotud galvaaniaelementide tekkimisega, toimub kui kaks erinevat metalli on kontaktis elektrolüüdi lahusega (juhib elektrit) maak:kivim või mineraal, mis on mingi lihtaine saamisel tooraineks metallurgia: metallide ja sulamite tootmine metallimaakidest särdamine: mitteoksiidsete maakide kuumutamine õhu juuresolekul, et saada oksiidne maak (metallide tootmisel maagist, pärast seda viiakse läbi redutseerimine) redutserimine: metalli saamine maagis sisalduva metalliühendi redutseerimisel (aluminotermia, karbotermia) maagi rikastamine: maak vabastatakse lisanditest, kasutades füüsikalise omaduste erinevust karbotermia: metalli redutseerimine maagist süsiniku või süsinikoksiidi abil kõrgel temperatuuril (kõrgahju protsess reageerimine CO-ga) Fe2O3 + 3CO = 2Fe + 3CO

Metallid
10 allalaadimist
thumbnail
2
rtf

Kontrolltöö küsimused ja vastused

MÕISTED: aluminotermia-lihtaine(enamasti metallide) saamine ühenditest alumiiniumiga redutseerimise teel elektrolüüs-elektsivoolu läbijuhtimisel lahustest või sulatatud elektrolüüdist elektroodidel kulgev redokreaktsioon karbotermia-metalli redutseerimine maagist süsiniku või süsinikoksiidi abil kõrgel temperatuuril keemiline vooluallikas-saade, milles keemilises reaktsioonis vabanev energia muudetakse vahetult elektrienergiaks. korrosioon- metalli hävimine(oksüdeerumine) keskkonna toimel oksüdeerija-aine, mille osakesed liidavad elektrone(ise redutseerudes) oksüdeerumine-elektronide loovutamine redoksreaktsioonis;sellele vastab elemendi oksüdatsiooniastme suurenemine redutseerija-aine, mille osakesed loovutavad elektrone(ise oksüdeerudes)

Keemia
135 allalaadimist
thumbnail
3
doc

Metallid praktikas

olevad elektrolüüdi (näiteks õhuke veekiht) lahuses. Metalli aatomid oksü- deeruvad (Fe0 ­ 2e- Fe2+) ja hapnik redutseerub (O2 + 2H2O + 4e- 4OH-). · Raua roostetamine ­ 4Fe + 3O2 + nH2O 2Fe2O3 nH2O. O2 happeline elektrolüüdi lahus + 2+ H Fe Fe · Lisanditega metall korrodeerub kiiremini kui puhas metall. · Korrosiooni tõrje võimalused: 1) metalli isoleerimine väliskeskkonnast (värvimine, lakkimine, kaitsva oksiidikihi tekitamine), 2) metalli kaitsmine teise metalli kihiga (nikeldamine, kroomimine, katmine tsingi või tinaga), 3) elektrokeemiline kaitse (kaitstava metalli ühendamine aktiivsema metalliga ­ protektor, siis oksüdeerub aktiivsem metall), 4) korrosiooni aeglustite kasutamine. 2. Metallide saamine ühenditest

Keemia
60 allalaadimist
thumbnail
3
doc

METALLID PRAKTIKAS

olevad elektrolüüdi (näiteks õhuke veekiht) lahuses. Metalli aatomid oksü- deeruvad (Fe0 ­ 2e- Fe2+) ja hapnik redutseerub (O2 + 2H2O + 4e- 4OH-). · Raua roostetamine ­ 4Fe + 3O2 + nH2O 2Fe2O3 nH2O. O2 happeline elektrolüüdi lahus + 2+ H Fe Fe · Lisanditega metall korrodeerub kiiremini kui puhas metall. · Korrosiooni tõrje võimalused: 1) metalli isoleerimine väliskeskkonnast (värvimine, lakkimine, kaitsva oksiidikihi tekitamine), 2) metalli kaitsmine teise metalli kihiga (nikeldamine, kroomimine, katmine tsingi või tinaga), 3) elektrokeemiline kaitse (kaitstava metalli ühendamine aktiivsema metalliga ­ protektor, siis oksüdeerub aktiivsem metall), 4) korrosiooni aeglustite kasutamine. 2. Metallide saamine ühenditest

Keemia
17 allalaadimist
thumbnail
14
doc

Metallurgia-kõrgahju tehnoloogia

Oskusega saada kõrgemaid temperatuure, kaasnes raua kasutusele võtmine umbes 3000 aastat tagasi. Rauda esineb looduses ainult mitmesuguste maakidena: magnetiit, punane rauamaak, pruun rauamaak, raudpagu. Eestis esineb neid soo- ja järvemaakidena. Võrusoo maagi näidist näeb loengul. Teadaolevalt on Eestis rauda sulatatud Harju maakonnas Jüril. Kuid rauamaaki esineb palju ka Alutagusel. Raud koos paljude lisanditega, sisuliselt malm, oli esialgu habras ja neist valmistatud riistad võisid kergesti murduda. Seega käsitlevadki sellised õppeained nagu konstruktsioonimaterjalid, metallide tehnoloogia kui ka konstruktsiooni- ja elektrimaterjalid küllalt põhjalikult ka metallide ja nende sulamite mitmesuguseid omadusi, nende saamist ja edasist töötlemist. Pärast seda, kui inimene õppis metallide valamisele ka neid sepistama, saadi juba tugevamat raua sulamit terast

171 allalaadimist
thumbnail
5
doc

Raud

Raud Raud (Ferrum) on keemiline element järjenumbriga 26. Raud asub Perioodilisussüsteemi VIII B rühmas ja 4. perioodis. Tal on neli stabiilset isotoopi massiarvudega 54, 56, 57 ja 58. Omadustelt on raud metall. Normaaltingimustel on raud tahke aine tihedusega 7,87 g/cm3. Raua sulamistemperatuur on 1535 Celsiuse kraadi. Raud esineb madalal rõhul neljakristallmodifikatsioonina olenevalt temperatuurist. Raud on kõige levinum element Maa koostises ning levimuselt maakoores metallidest alumiiniumi järel teisel kohal. Raua asetus perioodilisussüsteemis ja aatomi ehitus Raud asub perioodilisusüteemis VIII rühma kõrvalalarühmas. Raua aatomi

Keemia
77 allalaadimist
thumbnail
8
doc

Metallide tootmise põhiklassid

palju muud. Värvilismetallidest on tuntud vask (Cu) ja tema sulamid, millest valmistatakse peenraha ja tehakse elektrijuhtmeid. Kergmetall alumiiniumist (Al) foolimisse pakitakse toiduaineid, komme ja sokolaadi. Katuseplekina kasutatakse tsingitud (tsingikihiga) (Zn) raudplekki, tinakihiga (Sn) plekkpurkides hoitakse konserve, magneesiumsulamist (Mg) purkides aga karastusjooke ja õlut. Palju haruldasem metall on volfram (W), kuigi seda leidub kõikides ruumides, kus on elektrivalgus. Väärismetallid kuld (Au) ja hõbe (Ag) on ehete valmistamise materjaliks. Kelli kaetakse kroomi- ja niklikihiga. Kroomi (Cr) ja nikli (Ni) sulam on elektriküttekehamaterjal elektripliidis ja ­ triikrauas. Termomeetris kasutatakse mürgist elavhõbedat (Hg). Praegu tuntakse 112 elementi. Inimmõistuse töö tulemusena suureneb elementide arv veelgi. Need uued elemendid on kõik metallilised.

Keemia
32 allalaadimist
thumbnail
11
docx

Metallurgia. Kõrgahjutehnoloogia

protsessi kutsutakse särdamiseks ja sisuliselt on tegemist põletamisega. Näiteks 2 ZnS + 3 O2 = 2 ZnO + 2 SO2 Vääveldioksiid tõõdeldakse kaasajal ümber väävelhappeks. Atmosfääri teda lasta ei tohi , sest tekkivad happevihmad. Tuntakse kolme erinevat metallide tootmise viisi: 1. Vanimaks ja kõige levinumaks metallurgiaharuks on pürometallurgia (püro tähendab ladina keeles leeki). Siin sulatatakse metall maagist välja kõrge temperatuuriga. See kõrge temperatuuriga leek saadakse kütuste põletamisel. Nii toodetakse rauda ja tema sulameid, vaske jne. Karbotermia redutseerija on süsinik, kas koksina või mõnemadalama ühendina ( CO või CH4 ) Näiteks malmi tootmine kõrgahjus Fe2O3 + 3 CO = 2 Fe + 3 CO2Koks on kõige odavam võimalikest redutseerijatest ja seetõttu kasutatakse teda laialdaselt .

38 allalaadimist
thumbnail
4
doc

Metallid - seotud mõisted

abiks.pri.ee Aluminotermia ­ meetod, kus metalli redutseerimisel ühenditest kasutatakse redutseerijana alumiiniumi Duralumiinium ­ koosneb alumiiniumist, vasest ja mangaanist ­ on alumiiniumist veidi raskem, kuid vastupidav nagu teras Elektrokeemiline ­ toimuvad redoksreaktsioonid metalli pinnal olevas elektrolüüdi korrosioon lahuses. Elektrolüüs ­ metalli redutseerimine ühenditest elektrivoolu abil Keemiline korrosioon ­ toimub eelkõige kuivade gaasiliste ainete reageerimisel metalliga. Intensiivsemalt kulgeb see kõrgemal temperatuuril. Keemilise korrosiooni korral reageerivad metalli aatomid oksüdeeriva aine molekulidega otseselt. Keemiline vooluallikas ­ seade, milles keemilisel reaktsioonil vabanev energia muudetakse

Keemia
154 allalaadimist
thumbnail
8
doc

Metallurgia. kõrgahjutehnoloogia

otsi jmt, kuid hõõglampi ta ei sobi. Vesiniku abil saab puhta volframi WO3 + 3 H2 = W + 3 H2O Ka vesinik võib mõnedes metallides ( näiteks Ni ) lahustuda, muutes nad hapraks. Aktiivseid metalle ei saa, ka vesiniku abil toota 4 Metallotermia (aluminotermia, magnesotermia,...) redutseerijaks on mingi aktiivne metall. Arusaadavalt on meetod kallis. Sobib raskestisulavate metallide tootmiseks. Puhast kroomi toodetakse aluminotermiliselt 2 Al + Cr2O3 = 2 Cr + Al2O3 legeeritud teraste valmistamiseks vajalikku ferrokroomi toodetakse, aga karbotermiliselt FeO*Cr2O3 + 4 C = 4 CO + Fe + 2 Cr Ei sobi, kui sulad metallid omavahel segunevad. · Hüdrometallurgia metalle toodetakse lahustest ( mitte tingimata vesilahustest) ja temperatuur on arusaadavatel põhjustel mõõdukas

108 allalaadimist
thumbnail
15
docx

Keemia põhi- ja keskoolile

2. keskmised ­ H2SO3, H3PO4, HNO2 3. nõrgad ­ H2S, H2CO3 2. vesinike arvu järgi 1. üheprootonilised ­ HNO3, HCl 2. mitmeprootonilised ­ H2SO3, H3PO4 3. hapniku sisaldavuse järgi 1. hapnikku sisaldavad happed ­ H2SO3, H3PO4 4. hapnikku mitte sisaldavad happed ­ HCl, HBr, HI Keemilised omadused: 1. hape + ALUS = sool + vesi 2HCl + Mg(OH)2 = MgCl2 + 2H2O 2. hape + ALUSELINE OKSIID = sool + vesi 2HCl + MgO = MgCl2 + H2O 3. hape + METALL = sool + vesinik (vt. pingerida) (va. HNO3 ja konts. H2SO4 puhul ei redutseeru vesinikioon) 2HCl + Mg = MgCl2 + H2 4. hape + SOOL = uus sool + nõrgem või lenduvam hape 2HCl + Na2S = 2NaCl + H2S 5. hapnikhape = vastav oksiid + vesi H2CO3 = CO2 + H2O Saamine: 1. hapnikhappeid saadakse vastava happelise oksiidi reageerimisel veega. (va. Ränihapet) N: SO3 + H2O = H2SO4 2. hapnikku mittesisaldavaid happeid saadakse 5

Keemia
28 allalaadimist
thumbnail
4
docx

Kordamine keemia KT - korrosioon, sulamid

Kordamine keemia KT'ks - sulamid, korrosioon jms 1. Sulamid sulam koostisosad kasutusala Duralumiinium alumiinium + vask, magneesium, lennukitööstus mangaan Silumiin alumiinium + räni keemiatööstuse aparaadid Amalgaam elavhõbe + hõbe või mõni muu hammaste täidised metall Ehtehõbe hõbe + vask Ehtekuld kuld + vask Melhior vask + nikkel laevade aurujõuseadmete kondensaatoritorusi, arstiriistad, lauanõud, metallraha Messing e. valgevask vask + tsink puhkpillid, antiseptik, padrunikestad

Keemia
13 allalaadimist
thumbnail
3
pdf

Keemia ARVESTUSTÖÖ kordamisküsimused 10. klass

akktiivsed met.(Ni-Au) ei reagereeri veega 8.Redutseerija ja oksüdeerija määramine redoksreaktsioonis(oksüdatsiooniastmete muutumise järgi). Vihikus! 9.Selgita, mida tähendab metallimaagi rikastamine. Maak vabastatakse kõrvalainetest kasutades füüsikaliste omaduset erinevust 10.Selgita, mis on metallimaagi särdamine? Mitteoksiidsete maakida kuumutamine õhu juuresolekul, et saada oksiidide maak 11.Milliseid aineid kasutatakse metallimaakidest metalliväljaredutseerimiseks? Koksi Süsinikmonoksiid Vesinik Alumiinium 12.Mis on malm ja millest see koosneb? Malm on eelkõige vahesaadus maagist terase tootmisel, see koosneb süsinikkust ja teistest ainetest 13.Selgita lühidalt malmi saamise protsessi kõrgahjus. Küsi!! 14.Mis on teras? Raua ja süsiniku sulam 15.Selgita lühidalt terase saamise protsessi. 16.Mis on aluminotermia ja mille jaoks seda kasutatakse? Aluminotermia- lihtainete (enamasti metallide) saamine ühenditest alumiiniumiga

Keemia
20 allalaadimist
thumbnail
4
doc

Metallid 2

KEEMIA KT METALLID Metallide reageerimine mittemetallidega Aktiivsed metallid reageerivad halogeenide, hapniku ja väävliga energiliselt juba toatemperatuuril või nõrgal soojendamisel. Vähemaktiivsed metallid reageerivad mittemetallidega enamasti alles kuumutamisel. Väärismetallid reageerivad vähe. Redutseerija (aine, mille osakesed loovutavad elektrone) on metall. Redutseerimine- elektronide liitumine redoksreaktsioonis, elemendi oks. aste väheneb Oksüdeerija (aine, mille osakesed liidavad elektrone) on mittemetall. Oksüdeerimine- elektronide loovutamine redoksreaktsioonis, elemendi oks.aste kasvab. Redoksreaktsioon- keemiline reaktsioon, milles toimub elektronide üleminek ühtedelt osakestelt teistele, sellega kaasneb elementide oksüdatsiooniastme muutus. Metallide reageerimisel hapnikuga tekivad oksiidid.

Keemia
91 allalaadimist
thumbnail
9
doc

Anorgaaniline keemia

happeanioonidest ehk happejäägist. NaCl naatriumkloriid Na2SO4 ­ naatriumsulfaat Soolade liigitamine Lihtsoolad KCl NaCl keedusool Na2CO3 (pesu) sooda KNO3 kaaliumnitraat Vesiniksoolad NaHCO3 söögisooda KH2PO4 kaaliumdivesinikfosfaat Hüdroksiid soolad Cu2(OH)2CO3 Mg(OH)Cl Liitsoolad KAl(SO4)2 * 12H2O AlK(SO4)2*12H2O Soolade keemilised omadused 1. sool + metall = UUS SOOL + UUS METALL Ba + CuCl2 2Na + 2H2O = 2NaOH + H2 Li + FeCl3 2NaOH + CuSO4 = Cu(OH)2 + Na2SO4 CuSO4 + Ag CuSO4 + Fe = FeSO4 + Cu 2. sool + leelis = UUS SOOL + UUS ALUS FeCl3 + 3KOH = 3KCl + Fe(OH)3 3. sool + hape = UUS SOOL + UUS HAPE CaCO3 + 2HCl = CaCl + H2O + CO2 4. sool + sool = UUS SOOL + UUS SOOL Happed koosnevad vesiniku aatomi(te)st ja happejäägist. Happeid

Keemia
95 allalaadimist
thumbnail
29
doc

Keemia aluste KT3

vastupidi. Aktiivsete metalliliste elementide oksiidid on tugevalt aluseliste omadustega, vähemaktiivsete metalliliste elementide oksiidid on enamasti nõrgalt aluseliste omadustega. Mittemetalliliste elementide oksiidid on enamasti happeliste omadustega (v.a üksikud erandid). Elementide metalliliste omaduste nõrgenedes ja mittemetalliliste omaduste tugevnedes oksiidide aluselised omadused nõrgenevad ja happelised omadused tugevnevad. Mida enam vasakul metall pingereas asub, seda: suurem on ta keemiline aktiivsus, seda kergemini ta oksüdeerub, loovutab elektrone. suurem on ta redutseerimisvõime; raskemini redutseeruvad metallioonid. Pingerea iga metall tõrjub kõik temast paremal asuvad metallid nende soolade lahustest välja. Näide: Zn + HCl ZnCl2+ H2 lahja H2SO4 ja sulfaadid väga nõrgad oksüdeerijad, oksüdeerimisvõime kasvab happesuse suurenemisega Metallid (aatomi väliskihil elektrone suht. vähe) käituvad keemilistes reaktsioonides

Keemia alused
41 allalaadimist
thumbnail
10
doc

Malmi tootmine ja kasutamine

Sissejuhatus Malm on rauasulam, kus on vähemalt 2,14% süsinikku. Süsiniku protsent sulamis ei ole tavaliselt suurem kui 4. Eristatakse süsiniku sisalduse ja oleku järgi malmi liigid: valgmalmi (toormalm), hallmalmi, tempermalmi, kõrgtugevat ja eriomadustega legeermalmid. Malm erineb terasest selle poolest, et malmi pole võimalik toatemperatuuril plastselt deformeerida, kuna malm puruneb. Malm on heade valuomadustega ning seejuures ka odavam kui teras, mistõttu tihti on masinate korpused ja kered valatud malmist. Malmil on omadus summutada lööke. Samas on malmil halb keevitatavus. Malmi külmkeevitamisel kasutatakse spetsiaalseid elektroode, traate, kaitsegaase ja töövõtteid. Vaatamata sellele on külmkeevitamisel saadud liide kerge purunema, kuna temperatuuride vahest tekivad malmi kergesti praod. Seetõttu soovitatakse malmi enne

Kiuteadus
22 allalaadimist
thumbnail
2
doc

Metallid praktikas

muutumine). Metallide pinnale tekkiv oksiidikiht kas kaitseb metalli või hävitab metalli täielikult. Tugeva korrosiooni puhul võib materjal lakata täitmast funktsiooni, milleks ta on mõeldud. Mõned metallid, näiteks alumiinium, võivad moodustada korrosiooni takistava oksiidikihi. Raua roostetamine - kõige suurem majanduslik kahju. Soodustavaks teguriks on veel ka mere lähedus ja tänavate soolatamine. Lisanditega metall korrodeerub kiiremini kui puhas metall. Korrosiooni tõrje võimalused: 1) metalli isoleerimine väliskeskkonnast (värvimine, lakkimine, kaitsva oksiidikihi tekitamine) 2) metalli kaitsmine teise metalli kihiga (nikeldamine, kroomimine, katmine tsingi või tinaga) 3) elektrokeemiline kaitse (kaitstava metalli ühendamine aktiivsema metalliga - protektor, siis oksüdeerub aktiivsem metall) 4) korrosiooni aeglustite kasutamine. 2. Metallide saamine ühenditest

18 allalaadimist
thumbnail
5
sxw

Metallide saamine, sulamid & metalli korrosioon

METALLIDE SAAMINE. Üle 80% kõikidest elementidest on metallid. Mõned neist, näiteks kuld ja plaatina esinevad looduses ehedana, enamik metalle on looduses aga ühenditena. Looduslikud mineraalse tooraine mitmesuguseid liike, mis kõlbavad vabade metallide saamiseks tööstuslikus mastaabis, nimetatakse maakideks. Metallide saamiseks maakidest on mitu meetodit. Tähtsama neist on : 1) Metallide oksiidide redutseerimine söe või süsinikoksiidi abil. Raua tootmine oksiididest põhineb näiteks süsinikoksiidiga redutseerimise reaktsioonil. Fe2 O 3+3 CO=2 Fe+3 Co2 2) Metallide oksiidide redutseerimine aktiivsemate metallidega. Seda meetodit nimetatakse metallotermiaks. Tänapäeval kasutatakse metallotermiat peamiselt raskesti sulavate metallide saamisel. Näiteks tekib kroom (III) oksiidi ja alumiiniumi segu kuumutamisel: Cr 2 O 3 +2 Al= Al 2 O 3 +2 Cr

Keemia
75 allalaadimist
thumbnail
3
docx

Metallide korrosioon, metallide saamine maagist, elektrolüüs, keemilised vooluallikad, sulamid

Raua oksüdeerimusel tekivad raua ioonid, mis lähevad lahusesse. Levinumaks osküdeerijaks tavatingimustes on õhuhapnik. Happelises lahuses on peamiseks oksüdeerijaks vesinikioonid. Metallide korrosiooni kiirust mõjutavad tegurid: Metalli korrosiooni kiirus sõltub nii metalli iseloomust kui ka välistingimustest: temperatuurist , elektrolüüdi lahuse koostisest, õhuhapniku juurdepääsust, metallis leiduvatest lisanditest jms. Mida happelisem on lahus seda kiirem on korrosioon. Metall, mis sisaldab lisandina vähemaktiivseid lisandeid korrodeerub kiiremini kui puhas metall. Korrosiooni võivad soodustada ka lahuses esinevad lisandid. Metalle saab kaitsta korrosiooni eest katmisel värvi, laki või püsivama metalli kihiga jt. meetoditel. Metallide saamine maagist Kõige aktiivsemad metallid, mis moodustavad valdavalt ioonseid ühendeid, esinevad looduses põhiliselt mitmesuguste sooladena. Leelismetallid esinevad sageli kloriididena,

Keemia
38 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun