Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"prootium" - 39 õppematerjali

prootium ehk tavaline vesinik: tuumas 1 prootium 2. Deuteerium ehk raske vesinik: tuumas 1prootium ja 1 neutron 3. Triitium ehk üliraske vesinik: tuumas 1 prootium ja 2 neutronit
thumbnail
10
odt

Mittemetallid

VIA mittemetallid – -II, IV, VI (-2, +4,+6) H2O, H2SO3, H2SO4 VIIA mittemetallid – V, -I (-1, +5, +7) CaCl2, ( ), HClO VIIIA gaasid – VI (+6) Selgita mõned elemendi konkreetse näitega ja elektronvalemi ja ruutskeemi näitega. 3. Vesinik. Kasutusalad, omadused. Mis on isotoop? Nimeta vesiniku isotoobid ja võrdle neid. Vesinik - H2 Isotoobid on erineva massiarvuga keemilise elemendi teisendid, mis erinevad aatomituumas olevate neutronite arvu poolest. Isotoobid: prootium 1p,1e (aatommass u 1amü = 1 prootoni massiga) deuteerium 1p,1n,1e (aatommass u 2) triitium 1p,2n,1e (radioaktiivne, looduses vähe, aatommass u 3) Omadused: • Lõhnatu,maitsetu, värvusetu gaas • kõige kergem gaas • vees väga vähe lahustuv • madal kt • redutseerija, o.a. enamasti +1, aktiivsete metallidega oksüd. -> hüdriidid, kus o.a. on -1 • molekulaarne vesinik-püsiv, atomaarne-ebapüsiv

Keemia → Mittemetallid
46 allalaadimist
thumbnail
1
doc

Aineehitus.

Aineehitus Aine koosneb molekulidest, Molekulid koosnevad aatomitest. Aatomid koosnevad tuumast ja elektronkattest. Tuum koosneb nukleonidest ja elektronkatte elektronidest. Nukleonid jagunevad kaheks: -Prootonid (+) -Neutronid (0) Igal keemilisel elemendil on kindel tuumalaeng. Tuumalaeng (Z) = Aatomi number = Prootonite arv Massiarv (A) = Prootonite ja neutronite arv (nukleonite arv) A = Z + N Looduses on erinevaid isotoope. Elementide aatomid, millel on erinev arv neutroneid, kuid ühesugune prootoneid on isotoobid. (Eelneva tõttu on ka erinev aatommass). Prootium ­ 1 prooton, 1 elektron Deuteerium ­ 1 prooton, 1 neutron, 1 elektron Triitium ­ 1 prooton, 2 neutroni, 1 elektron Elektronide arvu elektronkihil saab leida 2n(ruudus) Väliskiht mahutab KUNI 8 elektroni: 1kuni 2 elektroni 2kuni 8 elektroni 3kuni 18 elektroni 4kuni 32 elektroni IB väliskihil on 1 elektron. Elektronkihtide arvu näitab perioodinumber (Mendelejei tabeli...

Keemia → Keemia
17 allalaadimist
thumbnail
2
doc

Kordamis küsimused Mittemetall

Halogeniidid - halogeenide ühendid o-a ­I. Rombiline väävel-kristallid on rombikujulised, esineb enamasti peenekristalse pulbrina(väävliõiena),kuid eritingimustel on võimalik suuremaid. Triitium e. üliraske vesinik - tuumas 1 prootin,2 neutroni. Väga radioaktiivne, looduses esineb väga vähe, aatomimass ületab tavalise vesiniku aatomimassi ligi 3 korda. Deuteerium e. raske vesinik - tuumas 1 prooton,1 neutron, aatomimass u.2. Prootium e. tavaline vesinik - tuumas 1 prooton, neutrone pole, aatomimass u.1. Kloorivesi - kloori vesilahus, tugev o-ja, sisaldab vähesel määral soolhapet ja hüpokloorishapet. Atomaarne hapnik e. monohapnik(O) - ebapüsib,liitub kiiresti aatomist molekuliks. Vesinikperoksiit(H2O2) - hapniku o.a ­I. Ebapüsiv, tugev o-ja, päikesevalguse käes laguneb kiiresti, tekitab söövitushaavu. Punane fosfor(Pn polümeer) - tumepunane tahke aine, ei lahustu vees ega orgaanilistes

Keemia → Keemia
109 allalaadimist
thumbnail
22
ppt

Hapnik ja vesinik- tähtsamad mittemetallid

Hapniku allotroobid Sama keemilise elemendi erinevad lihtained Monohapnik Dihapnik Trihapnik ehk osoon O O2 O3 Vesiniku isotoobid Erineva massiarvuga keemilise elemendi teisendid Tavaline vesinik ehk Raske vesinik ehk Üliraske vesinik ehk Prootium Deuterium Tritium H D T Hapniku kasutamine  Kõrge temperatuuriga leek  Raketikütuse koostisosa  Keemiatööstuses oksüdeerija  Meditsiin Vesiniku kasutamine  Redutseerija metallide tootmisel maakidest  Kütuseelement Vesiniku saamine  Laboris Tsingi reageerimisel hapetega Zn + 2HCl ZnCl2 + H2  Tööstuses Vee elektrolüüsil 2H2O 2H2 + O2

Keemia → Keemia
1 allalaadimist
thumbnail
11
ppt

Hapnik ja vesinik- tähtsamad mittemetallid

Hapniku allotroobid Sama keemilise elemendi erinevad lihtained Monohapnik Dihapnik Trihapnik ehk osoon O O2 O3 Vesiniku isotoobid Erineva massiarvuga keemilise elemendi teisendid Tavaline vesinik ehk Raske vesinik ehk Üliraske vesinik ehk Prootium Deuterium Tritium H D T Hapniku kasutamine Kõrge temperatuuriga leek Raketikütuse koostisosa Keemiatööstuses oksüdeerija Meditsiin Vesiniku kasutamine Redutseerija metallide tootmisel maakidest Kütuseelement Vesiniku saamine Laboris Tsingi reageerimisel hapetega Zn + 2HCl ZnCl2 + H2 Tööstuses Vee elektrolüüsil 2H2O 2H2 + O2 Hapniku saamine Laboris

Keemia → Keemia
4 allalaadimist
thumbnail
11
rtf

Vesinik

Tartu Kivilinna Gümnaasium VESINIK- Tulest sündiv...vesi Koostaja: Kairit Linnaste Juhendaja: Helgi Muoni Tartu 2008 Sisukord Sisukord......................................................................................................................2 1 Üldiseloomustus..........................................................................................................3 Avastamine ja nime saamine...................................................................................3-4 Leidumine looduses..............................................

Keemia → Keemia
53 allalaadimist
thumbnail
8
doc

Vesinik

massiosa vesinikku, 1/4 massiosa heeliumi ja mõni miljardik massiosa liitiumi. Teised keemilised elemendid on tuumareaktsioonide saadustena hiljem tekkinud. Kui Universum veelgi jahtus, jagunes mass asümmeetriliselt ning moodustusid vesinikupilved. Gravitatsiooni toimel tihenesid need pilved algul galaktikateks ning hiljem prototähtedeks. Gravitatsiooni toimel tihenes aine niivõrd, et tuumasünteesis hakkasid vesinikutuumadest moodustuma heeliumituumad. Nii moodustusid esimesed tähed. Prootium saab heelium-4-ks peamiselt deuteeriumi ja triitiumi kui vaheastmete kaudu. Seejuures vabanev energia on tähtede energiaallikas. Hiljem tekkisid väga suurtes tähtedes samuti tuumasünteesi teel raskemad elemendid süsinik, lämmastik ja hapnik, mis on kõikide tuntud eluvormide põhikomponendid. Osa materjali väljus tähtedest tähetuulena, supernoovade plahvatustena või muul moel ning nendest koos säilinud gaasiga tekkisid uued tähed, jne. Siiski on algsest vesinikust ja

Keemia → Keemia
45 allalaadimist
thumbnail
5
docx

Aatomikooslused Molekulid ja kristallid

Aatomikooslused Molekulid ja kristallid Klass: 12 Kuupäev: 9. aprill Tallinn 2009 Tõrjutusprintsiip Eri elemente eristab laenguarv Z:Z prootonit tuumas ja sama arv elektrone selle ümber elektronkattes parvlemas. Enamikus tuumades on olemas ka mingi kindel arv neutraalseid tuumaosakesi, neutroneid, kuid nendest ei sõltu, mis elemendile aatom kuulub ja aatomi omadusi mõjutavad nad nõrgalt. Positiivne tuum tõmbab neid kõiki endale võimalikult lähemale. Elektroni leiulaine on tema "koht" aatomis. Tuumale lähimale, põhiseisundile vastava leiulaine peakvantarv n = 1, edasi kihistuvad ergastatud kvantseisundid, mille n = 2, 3 jne. Elementide spektrite ning füüsikaliste ja keemiliste omaduste uurimine näitab, et laias laastus on selline alglähend mõistlik. Tuuma tõmbele alludes asuvad kõi Z elektronid tuumale lähimasse leiulainesse? Siis sarnaneks kõikide aatomite spektrid vesiniku spektrile. N...

Füüsika → Füüsika
63 allalaadimist
thumbnail
18
pptx

Aatomi ehitus

Second level arvuga, kuid erineva Third level neutronite arvuga Fourth level Fifth level elementide aatomid. Erinevad teineteisest ka aatommasside poolest. http://www.youtube.com/watch?v=Jdtt3LsodAQ Vesiniku isotoobid prootium deuteerium triitium + + + A1 2 3 Z1 H 1 H 1 H Elektronkate Elektronkatte moodustavad elektronkihid. Igas elektronkihis tiirlevad elektronid kindlal kaugusel tuumast. Elektronkihtide nummerdamist alustatakse tuumale lähimast kihist. (esimene kiht n=1) Elektronide arv elektronkihtidel § 1. elektronkiht ­ kuni 2 elektroni. 4 § 2. elektronkiht ­ kuni 8 elektroni. 3

Loodus → Loodusõpetus
11 allalaadimist
thumbnail
5
doc

Suur Pauk

Suur Pauk Referaat Sissejuhatus Suur Pauk (inglise keeles Big Bang) oli hüpoteetiline sündmus umbes 13,7 miljardit aastat tagasi: Universum hakkas kujuteldamatult tihedast olekust plahvatuslikult paisuma. Seda loetakse kosmoloogia standardmudelis Universumi alguseks. Suure Paugu teooria Suure Paugu teooria käsitleb peale Suure Paugu ka universumi varajast arengut pärast Suurt Pauku.Suur Pauk ei olnud plahvatus olemasolevas ruumis, vähemalt mitte selle tänapäevases mõistes, vaid mateeria, ruumi ja aja ühine tekkimine algsest singulaarsusest.Paisumine on vaadeldav Hubble'i seose kaudu, mis ütleb, et mida kaugemal mingi galaktika meist (vaatlejast) on, seda kiiremini ta meist eemaldub.Suurest Paugust umbes 300 000 aasta võrra hilisemast seisundist annab tunnistust kosmiline mikrolainetaust ehk reliktkiirgus: tol ajal omandasid mikrolainetausta footonid ab...

Füüsika → Füüsika
44 allalaadimist
thumbnail
14
doc

Mittemetallide omadused, saamisviisid, kasutusalad

H2 + S H2S Vesinik Omadused · Kerge · Maitsetu · Värvitu · Vees väga vähe lahustuv · Keemistemperatuur ­ 253oC · Ioonid on üliväikesed · Käitub enamjaolt redutseerijana, · o-a -I · molekulaarselt väheaktiivne · atomaarselt (vahesaadus reaktsioonides) aga üsna aktiivne Moodustab isotoope: 1. Prootium ehk tavaline vesinik: tuumas 1 prootium 2. Deuteerium ehk raske vesinik: tuumas 1prootium ja 1 neutron 3. Triitium ehk üliraske vesinik: tuumas 1 prootium ja 2 neutronit Saamine 1. Laboris enamjaolt tsingi reageerimisel väävel või soolhappe lahusega. Sellel eraldub tihti ka mõningaid lisandeid, andes teravavõitu maitse. 2. Puhtama vesiniku saamiseks kasutatakse vee elektrolüüsi, kuhu lisatakse tugevaid elektrolüüte kuna vesi on väga nõrk elektrolüüt. 3

Keemia → Keemia
133 allalaadimist
thumbnail
13
odt

Hapnik ja Vesinik

miljardik massiosa liitiumi. Teised keemilised elemendid on tuumareaktsioonide saadustena hiljem tekkinud. Kui Universum veelgi jahtus, jagunes mass asümmeetriliselt ning moodustusid vesinikupilved. Gravitatsiooni toimel tihenesid need pilved algul galaktikateks ning hiljem prototähtedeks. 8 Gravitatsiooni toimel tihenes aine niivõrd, et tuumasünteesis hakkasid vesinikutuumadest moodustuma heeliumituumad. Nii moodustusid esimesed tähed. Prootium saab heelium-4-ks peamiselt deuteeriumi ja triitiumi kui vaheastmete kaudu. Seejuures vabanev energia on tähtede energiaallikas. Hiljem tekkisid väga suurtes tähtedes samuti tuumasünteesi teel raskemad elemendid süsinik, lämmastik ja hapnik, mis on kõikide tuntud eluvormide põhikomponendid. Osa materjali väljus tähtedest tähetuulena, supernoovade plahvatustena või muul moel ning nendest koos säilinud gaasiga tekkisid uued tähed

Keemia → Keemia
36 allalaadimist
thumbnail
5
doc

Mittemetallid - Kordamisküsimused riigieksamiks II

· Aatomi raadius on suhteliselt suur. · Aatomite väliskihil on 4-7 elektroni (v.a. Boor) · Suhteliselt suur elektronegatiivsus. 3. Miks võivad mittemetallid olla keemilistes reaktsioonides nii oksüdeerijad kui ka redutseerijad? · Kuna nad suudavad elektrone nii liita kui ka loovutada. 4. Vesinik : · Aatomi ehitus ­ üks elekronkiht, üks elektron, tuumas 1 prooon, 0 neutroni. · Isotoobid ­ tavaline vesinik e. prootium, raske vesinik e. Deuteerium, üliraske vesinik e. Triitium. · Füüsikalised omadused ­ kergeim gaas, värvusetu, lõhnatu, maitsetu, vees ei lahustu. · Keemilised omadused ­ põleb, reag. Mittemetallidega. · Tähtsamad ühendid + kasutamine i. H2O2 - vesinikperoksiid 5. Kas vesinik on keemilistes reaktsioonides oksüdeerija või redutseerija? Põhjenda. Oska kirjutada vastavat näitevõrrandit. 6. Tetreelid :

Keemia → Keemia
50 allalaadimist
thumbnail
4
doc

Vesinik

oli ainult vesi, millel ei olnud maitset ega lõhna ning kuivaksaurutamisel ei jätnud kõige väiksemat nähtavat jääki. Vesinik on perioodilisustabeli esimene element. Teda paigutatakse nii IA kui ka VIIA rühma. Kõige õigem on teda paigutada mõlemasse rühma. Vesinik on väga kergesti aurustuv. Sulamistemperatuur on -255C ja keemistemperatuur -253C. Vesinik esineb mitme isooobina nagu näiteks: tavaline vesinik prootium, raske vesinik deuteerium ja üliraske vesinik triitium. Omadustelt on vesinik ilma lõhna maitse ja värvita gaas. Vees lahustub väga vähe. Eriti tuleohtlik ning vees praktiliselt lahustumatu. Kuna vesinik on õhust ligikaudu 14,5 korda kergem hajub teda pidevalt kosmosesse. Maakeral leidub vesinikku peaaegu igal pool- vees, naftas, elusolendites jne. Inimorganismi koostisest moodustab vesinik umbes 10%. Kuigi maal leidub vesinikku peaaegu igal pool on ta siin keskmiselt levinud

Keemia → Keemia
27 allalaadimist
thumbnail
2
doc

Mittemetallid, halogeniidid, halogeenid

Praktiliselt ei juhi elektrit.(erand-süsiniku allotroop grafiit on hea elektrijuht) Hoiavad aatomeid suhteliselt tugevasti kinni. Aatomite vahel kovalentne side. o VESINIK H2 Perioodilisustabeli esimene element. Kui vesiniku aatom loovutab elektroni, tekib ioon H+, millel puudub elektronkate täielikult. Isotoobid (sama keemilise elemendi aatomid, millel on erinev aatommass) on: Tavaline vesinik e prootium, aatomituumaks on 1 prooton. Raske vesinik e deuteerium, 1 prooton + 1 neutron, sisaldub vähesel määral ka vees (H2O), kasutatakse vesinikupommides. Üliraske vesinik e triitium, 1 prooton + 2 neutronit Universumis on vesinik kõige levinuim keemiline element, Päikese massist moodustab ta suurema osa. Atomaarne vesinik e monovesinik on ebapüsiv, tugev redutseerija. Puhas vesinik põleb õhus sinaka leegiga,paukgaas on plahvatusohtlik.

Keemia → Keemia
88 allalaadimist
thumbnail
3
doc

MITTEMETALLID (Vesinik ja hapnik)

MITTEMETALLID 1. Üldiseloomustus ja mittemetallide mitmekesisus · Mittemetallid ­ kuuluvad kõik p-elemendid, mis ei ole metallid ega poolmetallid. Kokku 22. Välisel elektronkihil tavaliselt 4-8 elektroni. · Mittemetallid on väga mitmekesised. Nende omavahelised erinevused on palju suuremad kui metallidel. · On nii gaasilisi (N2, O2, Ar), tahkeid (C, P, Si) kui ka üks tavatingimustes vedel aine (broom). · On madala sulamistemperatuuriga pehmeid aineid, aga ka väga kõrge sulamis- temperatuuriga ülimalt tugevaid ja vastupidavaid aineid (teemant). · Mittemetallide värvused võivad olla väga erinevad (S-kollane, C-must). · Mittemetallid võivad looduses esineda mitmete allotroopidena. · Allotroopia ­ keemilise elemendi esinemine mitme lihtainena. Näiteks: süsinik ­ teemant, grafiit. Allotroobid võivad üksteisest erineda: 1) aatomite arvu poolest ...

Keemia → Keemia
15 allalaadimist
thumbnail
3
doc

Mittemetallide materjal

MITTEMETALLID 1. Üldiseloomustus ja mittemetallide mitmekesisus · Mittemetallid ­ kuuluvad kõik p-elemendid, mis ei ole metallid ega poolmetallid. Kokku 22. Välisel elektronkihil tavaliselt 4-8 elektroni. · Mittemetallid on väga mitmekesised. Nende omavahelised erinevused on palju suuremad kui metallidel. · On nii gaasilisi (N2, O2, Ar), tahkeid (C, P, Si) kui ka üks tavatingimustes vedel aine (broom). · On madala sulamistemperatuuriga pehmeid aineid, aga ka väga kõrge sulamis- temperatuuriga ülimalt tugevaid ja vastupidavaid aineid (teemant). · Mittemetallide värvused võivad olla väga erinevad (S-kollane, C-must). · Mittemetallid võivad looduses esineda mitmete allotroopidena. · Allotroopia ­ keemilise elemendi esinemine mitme lihtainena. Näiteks: süsinik ­ teemant, grafiit. Allotroobid võivad üksteisest erineda: 1) aatomite arvu poolest ...

Keemia → Keemia
9 allalaadimist
thumbnail
13
ppt

Keemia- perioodilisustabeli töö

Kordamine kontrolltööks II Mõisted nukleonid, prootonid, neutronid, elektronid, aatomituum, massiarv, tuumalaeng, isotoop, prootium, deuteerium, triitium, D. Mendelejev, perioodilisussüsteem, rühm, periood, elektronskeem, elektronvalem, ruutskeem, s-alakiht, p-alakiht, d- alakiht, s-orbitaal, p-orbitaal, d-orbitaal, paardunud elektron, paardumata elektron, aatomi põhiolek, elektronegatiivsus, metall, mittemetall, metallilisus, redutseerija, oksüdeerija, oksüdeerumine, redutseerumine, katioon, anioon, siirdemetall, leelismetall, leelismuldmetall, halogeen, väärisgaas, hüdriid, s-elemendid, p-elemendid, d-elemendid, f- elemendid, oktetireegel, max o.a, min o.a Küsimused 1. Miks on aatom tervikuna neutraalne, kuidas tekivad erinimelised ioonid, millised on nende osakeste raadiused võrreldes üksteisega? PÕHJENDA! 2. Millised on s-, p-, d-, ja f-elemendid ja nende väliselektronkihte...

Keemia → Keemia
49 allalaadimist
thumbnail
3
doc

Vesinik-Hapnik-Väävel

Vesinik · Järjenumber 1 · 1.perioodi element ja kuulub s-plokki · Paigutatakse erinevatesse rühmadesse. · Aatommass on 1,00797 · Elektronegatiivsus 2,1 · Elektronkonfiguratsioon 1s1 · Tavaliseim oksüdatsiooniaste on I, sest enamasti käitub redutseerijana loovutades ühe elektroni. · Isotoobid: · Prootium ehk tavaline vesinik. · Deuteerium ehk raske vesinik. · Triitium ehk üliraske vesinik. · Füüsikalised omadused: värvitu, lõhnatu, maitsetu gaas, väikseima tihedusega gaas, lahustub vees halvasti, keemistemperatuur -253°C, sulamistemperatuur -259°C. · Keemilised omadused: kergesti süttiv gaas, kuumutamisel reageerib paljude ainetega, vees vähelahustuv, väheaktiivne mittemetall, enamikes ühendites

Keemia → Keemia
25 allalaadimist
thumbnail
3
doc

Vesinik ja Hapnik | Elementide levik looduses

5 ~ 1% on väärisgaasid jt, sellest 0,03% on CO 2 Väljahingatavas õhus on 4,4% CO 2 -te (süsihappegaas). Universum, sh ka Päike, koosneb põhiliselt Vesinikust, millele järgneb Heelium. c) Inimorganismis on 90 keemilist elementi. Neist kõige levinumad on C, H, O, N, P, S. Vesiniku isotoobid Isotoop ­ erineva massiarvuga keemilise elemendi teisendid (erinevad neutronite arvu poolest aatomi tuumas). Vesinik esineb looduses mitme isotoobina. Tavaline vesinik e. prootium ( 1 1 H) ­ aatomituumaks on prooton. H aatommass = prootoni massiga (~1 amü) 2 Raske vesinik e. deuteerium ­ looduses vähesel määral (tähis 1 H ehk D). Aatomi tuumaks on 1 prooton ja 1 neutron (aatommass ~ 2) Üliraske vesinik e. triitium ( 31 H ehk T) ­ aatomi tuumad koosnevad 1p -st ja 2n ­ist. Aatommass ületab tavalise H aatommassi ~ 3 korda

Keemia → Keemia
26 allalaadimist
thumbnail
17
pptx

VESINIK põhjalik esitlus

· Füüsikalised jõud nõrgad. · Tihedus on väiksem kui heeliumil. LEVIK LOODUSES · Vesinik on üks levinumaid mittemetallilisi elemente maakoores. · Maailmaruumis on vesinik aga kõige levinum keemiline element. · Moodustab põhiosa Päikese massist. · Looduses lihtainena vesinikku ei leidu. · Kuulub paljudesse ühendite koostisesse. · Vesi on vesiniku levinuim ühend. VESINIKU ISOTOOBID · Põhiline vesiniku isotoop looduses on vesinik e. Prootium · Prootiumi massiarv on 1 · Aatomituum koosneb vaid ühest prootonist · Teine leviv raske vesinik looduses on deuteerium. · Massiarv on 2 · Aatomituumas on ka üks neutron · Vett, mille koostisesse kuulub deuteerium nimetatakse ,,raskeks veeks" · Tuntakse ka vesiniku radioaktiivset isotoopi massiarvuga 3, see on üliraske vesinik ehk triitium. VESINIKU KEEMILISED OMADUSED · Vesinik on tavatingimustes küllaltki keemiliselt väheaktiivne.

Keemia → Elementide keemia
3 allalaadimist
thumbnail
24
odp

Mittemetall: Vesinik

Üldiseloomustus ● Tähiseks on H. ● Hydrogenium- vett tekitav. ● Koosneb kaheaatomilistest molekulidest (H2). ● Perioodilisusetabelis 1. element. ● Tuumalaeng on 1. ● Tuumas on 1 prooton, elektronkattes 1 elektron. ● IA kui ka VIIA rühmas. ● Avastati 1766. a lord Henry Cavendishi poolt. 2 / 24 Üldiseloomustus Vesinikul on kolm isotoopi*: ● 1 H – prootium (harilik vesinik) ● 2 H – deuteerium (D) (raske vesinik) ● 3 H – triitium (T) (üliraske vesinik). * sama tuumalaengu, aga erineva massiarvuga. 3 / 24 Levik looduses ● Lihtainena maal enamjaolt ei leidu. ● Liitainena on Maal üsnagi levinud. ● Maakoores moodustab alla ühe massiprotsendi. ● Universumis on H2 levinuim element (75%).

Keemia → Anorgaaniline keemia ii
13 allalaadimist
thumbnail
6
doc

Mittemetallid ja nende saamine

5.MITTEMETALLID 5.1 MITTEMETALLIDE MITMEKESISUS *Mittemetallid asuvad perioodilisussüsteemis perioodide lõpus ja suuremates rühmades. Mittemetallidel on viimasel kihil 4-8 elektroni. Lihtainena on nende seas 11 gaasilist: H2 , N2, O2, F2, Cl2 ; 6 väärisgaasi (He-Rn) 10 tahket: B, C, Si, P, As, S, Se, Te, I, At 1 vedel: Br2 *Mittemetallid on madala sulamistemperatuuriga, üsna pehmed ja kergesti peenestatavad. Mõned on väga kõrge sulamistemperatuuriga, kõvad kuid seejuures haprad. Väga erineva värvusega. Mittemetallide ühiseks omaduseks on see, et nad praktiliselt ei juhi elektrit, kuid süsinik allotroop grafiit on hea elektrijuht. Mittemetallide aatomid on metallide aatomitega võrreldes suhteliselt väiksemad. Välises elektronkihis on neil enamasti elektrone märgatavalt rohkem kui metallide aatomites. Tuumalaengu mõju väliskihi elektronidele on küllalt suur ja neid hoitakse aatomis suhteliselt tugevalt kinni, seega loovutavad väliskihi ...

Keemia → Keemia
54 allalaadimist
thumbnail
25
ppt

TÄHTSAMAD MITTEMETALLID

TÄHTSAIMAD MITTEMETALLID H 2 O2 N2 C KOOSTAJA: MARTIN MAASIK VESINIK. H2 · Universumis väga levinud (75% massist) · Maal esineb peaaegu ainult ühendites · Vähesel määral esineb lihtainena atmosfääri kõrgemates kihtides; mõnikord võib eralduda ka vulkaanipursetel või nafta puurimisel · Esineb kolme isotoobina: 1 H ­ prootium, nn harilik vesinik (stabiiilne) 2 H ­ deuteerium (D), nn raske vesinik (stabiilne) 3 H ­ triitium (T), nn üliraske vesinik (radioakt.) Vesinik · Värvuseta · Maitseta · Lõhnata · Kergeim gaas (0,08988 g/dm3) · Vähelahustuv (20°C juures ~0,0016g/l) · Hea soojusjuht (ligikaudu 7,2x õhust parem) · Sulamistemp. 14,1K, keemistemp. 20,28K Vesinik · Tavatingimustes ja madalal temperatuuril väheaktiivne · Halogeenidega ühinedes moodustab

Keemia → Keemia
17 allalaadimist
thumbnail
3
doc

Põhikooli Keemia eksami mõisted

1) Aatom-nimetatakse väikseimat osakest, mis säilitab talle vastava keemilise elemendi keemilised omadused 2) aatomi tuum-on aatomi väga väike ja tihe keskosa, mis moodustab põhilise osa aatomi massist 3) elektronkate-Elektronkate on aatomi tuuma ümbritsev elektronide pilv 4) nukleonid-on barüonid, mis koosnevad ainult u- ja d-kvarkidest ning mille isospinn on 1/2 5) prooton-on positiivse elektrilaenguga elementaarosake 6) neutron-on neutraalse elektrilaenguga elementaarosake 7) elektron-negatiivse laenguga fundamentaalne elementaarosake 8) ioon-on aatom või molekul, mis on kaotanud (või juurde saanud) ühe või mitu valentselektroni 9) katioon- positiivse laenguga ioon 10) anioon- negatiivse laenguga ioon 11) redutseerija-element mis redoksreaktsioonikäigus loovutab elektrone. 12) Oksüdeerija-on keemias aine, mis redoksreaktsiooni käigus liidab endaga elektrone. 13) Redutseerimine-on re...

Keemia → Keemia
58 allalaadimist
thumbnail
4
sxw

Keemia konspekt

Keemia konspekt 2. loeng Aine (ka: mateeria) all mõistetakse loodusteadustes (füüsikas ja keemias) tavaliselt stabiilseid seisumassiga elementaarosakesi (tavaliselt prootoneid, neutroneid ja elektrone) ning nende kombinatsioone (millest tuntuim on aatom). Selliselt mõistetuna vastandatakse sageli ainet väljale. Ainet saab iseloomustada massiga (ainet saab kaaluda), mass aga on rangelt võrdeline energiaga (E = m×c2). Päikeses (ja tähtedes) nii toimubki, mass muutub ilma massita energiaks (mis toimub ju ka vesinikupommi lõhkamisel) ikka 5 miljonit tonni igas sekundis vesinikku heeliumiks "põletades". (Päike ja vesinikupomm toimivad samade füüsikaliste põhimõtete alusel). Keemia, selle klassikalises mõistes, on teadus ainetest ­ ainete ehitusest, aine omadustest, aineainete reaktsioonidest, mille tulemusel ained lagunevad ja moodustuvad uued. Kiirgus (väli) on aine ­ energia ...

Keemia → rekursiooni- ja...
6 allalaadimist
thumbnail
12
doc

Tina, fosfori, väävli ja hapniku erinevad tüübid

Isotoobi keemilised tähised ja nimetused tulenevad reeglina vastava elemendi nimetusest. Erandiks on vesiniku isotoobid Valem või tähis Nimi Tuuma Tuumas Elekton Keskmine prootoneid neutronei e sisaldus d vesinikus 1 H Prootium Vesinik 1 0 1 99,98% D ehk 2 H Deuteerium Raske vesinik 1 1 1 0.015% T ehk 3H Triitium Üliraske 1 2 1 10-17 % vesinik 4 H 5 H 6 H 7 H Triitium termotuumarelv, vesinikupomm, kui kella osutid helenduvad pimedas rohekalt, siis on

Keemia → Keemia
12 allalaadimist
thumbnail
10
docx

Keemia - "Mittemetallid" referaat (7lk)

MITTEMETALLID Nimi Kool Klass 2012 Tiitelleht 1. Mis on mittemetallid? Alarühmad. 2. Fakte mittemetallidest. 3. Mittemetallide füüsikalised omadused, konkreetsemad näited mittemetallidest. 4. Mittemetallide keemilised omadused, allotroobid. 5. Vesinik 6. Hapnik 7. Kasutatud allikad Mis on mittemetallid Mittemetallid on lihtained, millel ei ole metallidele iseloomulikke omadusi. Esinevad nii gaasi, vedeliku kui ka tahkisena. Nad on suure elektronegatiivsusega elemendid, mis keemilistes reaktsioonides peamiselt liidavad elektrone. Mittemetallid on kõik p- elemendid, mis pole metallid ega poolmetallid. Neid on kokku 22. Tavaliselt on välisel elektronkihil võrdlemisi palju elektrone, tavaliselt 4-8. Tahked mittemetallid on haprad ja ei ole sepistatavad, samuti puudub neil metalne läige (v.a jood). Mittemetallideks on näiteks vesinik, hapnik, boor, süsinik, lämmastik, f...

Keemia → Keemia
10 allalaadimist
thumbnail
7
docx

Mittemetallilised elemendid

· Esineb allotroopiat Allotroopia ­ Nähtus, kus üks ja sama keemiline element saab esineda mitme erineva lihtainena. · Erinev aatomite arv(nt hapnik) · Erinev molekulide paigutus(nt väävel) · Erinev aatomite paigutus kristallvõres(nt teemant ja grafiit) Vesinik VIIA rühmas sellepärast ka, et tal on halogeenidega sarnaseid omadusi. Hapniku ja räni järel üks levinumaid elemente. Lihtainena on teda suhteliselt vähe. Esineb looduses isotoopidena. Tavaline vesinik ehk prootium, raske vesinik ehk deuteerium(1 prooton, 1 neutron), üliraske vesinik ehk triitium( 1 prooton, 2 neutronit). Isotoop on radioaktiivne. Lihtainena: · Lõhnatu, maitsetu, värvusetu gaas · Kõige kergem · Vees väga vähe lahustuv · Keemistemperatuur -253 C, molekulivahelised jõud nõrgad, sellepärast on madal Keemilised omadused: · Suhteliselt väheaktiivne · Enamasti käitub redutseerijana, o.-a. I

Keemia → Keemia
47 allalaadimist
thumbnail
7
doc

Keemia referaat mittemetallidest.

kg/m³. Vesinik on elusorganismide tähtis komponent. Peamisteks ühenditeks on vesi, kõik orgaanilised ühendid ja paljud mineraalid. Vabana (H2) esineb teda vulkaaniliste gaaside ja naftagaaside koostises. Vesiniku füüsikalisi omadusi: lõhnata, värvuseta ja maitseta gaas. Vees vähelahustuv. Vesikinu keemilisi omadusi: tavatingimustel mõõduka tugevusega oksüdeerija, kuumutamisel käitub oksüdeerijana. Vesinikul on kolm isotoopi: · ¹H - prootium (harilik vesinik) · ²H - deuteerium (D) (raske vesinik) · ³H ­ triitium (T) (üliraske vesinik) Kasutusalad: · Keemiatööstuses ammoniaagi sünteesil, soolhappe tootmisel, taimsete õlide ja vedelate rasvade hüdrogeenimisel tahketeks jne. · metallide keevitamisel (kõrgetemperatuurne leek üle 2600 C) · metanooli ja mootorikütuse tootmisel · raketikütusena · kütuseelementides elektri ja soojuse tootmiseks Hapnik

Keemia → Keemia
35 allalaadimist
thumbnail
12
docx

Anorgaanilised ained

II kursususe teemad 1. Keemilised vooluallikad. Nimeta keemilisi vooluallikaid ja nende tööpõhimõtteid (ka reaktsioonid mis nendes toimuvad!). Kes oli esimese vooluallika leiutaja? 2. Leelis- ja leelismuldmetallid. Nende kasutamine igapäevaelus. Keemilised ja füüsikalised omadused (ka reaktsioonid!). Nende metallide ühendid ja nende kasutamine igapäevaelus. 3. p-metallid. Nende kasutamine igapäevaelus. Keemilised ja füüsikalised omadused (ka reaktsioonid!). Nende metallide ühendid ja nende kasutamine igapäevaelus. 4. Siirdemetallid. Nende kasutamine igapäevaelus. Keemilised ja füüsikalised omadused (ka reaktsioonid!). Nende metallide ühendid ja nende kasutamine igapäevaelus. 5. Mis metallide üldomadused, võrreldes mittemetallidega? 6. Mis on allotroop? 7. Halogeenid. Nende kasutamine igapäevaelus. Keemilised ja füüsikalised omadused (ka reaktsioonid!). Nende ühendid ja nende kasutamine igapäevaelus. 8. Kalkogeenid. Nende kasutamine iga...

Keemia → Keemia
7 allalaadimist
thumbnail
11
docx

Universum

Universum. Gerda Jaanus Häädemeeste Keskkool 12.klass 2008 a. Universum on inimesele tajutav ja kujuteldav maailmakõiksus, kõikide asjade kogusus. Teaduses mõeldakse selle all kosmost ehk maailmaruumi, mis sisaldab kogu ainet ja energiat. Uinversumi paisumine pärast Suurt Pauku. 21. sajandi alguses valitseb seisukoht, et Universum tekkis Suure Pauguga ning sestsaadik jätkab laienemist. Kindlat dateeringut Suurel Paugul ei ole. Nimetatakse daatumeid 13,7 miljardit aastat tagasi, 15 miljardit aastat tagasi ja 17 miljardit aastat tagasi. Kõige tõendatum daatum on praegu 17,1 miljardit aastat tagasi. Kosmoloogia tegeleb universumi arenguga aegade algusest kuni tänapäevani ning püüab ennustada Universumi tulevikku. Enamik uuemaid mudeleid ennustab üha jätkuvat paisumist. Ent on ka seisukoht, mille kohaselt Universum lõpuks kollapseerub (Suur Kollaps). Tänapäeval läh...

Füüsika → Füüsika
231 allalaadimist
thumbnail
7
doc

Suure Paugu teooria ja ajalugu

Suur Pauk Allikas: Vikipeedia WMAPi ülesvõte kosmilisest mikrolainetaustast ehk reliktkiirgusest. Suur Pauk (inglise keeles Big Bang) oli hüpoteetiline sündmus umbes 13,7 miljardit aastat tagasi: universum hakkas kujuteldamatult tihedast olekust plahvatuslikult paisuma. Seda loetakse kosmoloogia standardmudelis universumi alguseks. Suure Paugu teooria käsitleb ka universumi varajast arengut pärast Suurt Pauku. Suur Pauk ei olnud "plahvatus" olemasolevas ruumis, vaid mateeria, ruumi ja aja ühine tekkimine algsest singulaarsusest. Paisumine on vaadeldav Hubble'i seose kaudu, mis ütleb, et mida kaugemal mingi galaktika meist on, seda kiiremini ta meist eemaldub. Suurest Paugust umbes 300 000 aasta võrra hilisemast seisundist annab tunnistust kosmiline mikrolainetaust ehk reliktkiirgus: tol ajal omandasid mikrolainetausta footonid absoluutselt mustale kehale omase kiirgusspektri. Suure Paugu teooria on kosmoloogias valdav teaduslik ...

Füüsika → Füüsika
98 allalaadimist
thumbnail
30
doc

Päikesesüsteemi tekkimine

Kadrioru Saksa Gümnaasium Päikesesüsteemi tekkimine Referaat Rene Randlane 12. a Tallinn 2013 Sisukord 1. Suur Pauk...................................................................................................................3 1.1 Universumi varajane ajalugu................................................................................4 1.2 Inflatsiooniline universum...................................................................................6 1.3 Kvarkide periood..................................................................................................7 1.4 Topofaas...............................................................................................................7 1.5 Neli vastasmõju.................................................

Füüsika → Astronoomia ja astroloogia
4 allalaadimist
thumbnail
15
docx

Keemia põhi- ja keskoolile

Hapnikuga: (enamuses on O2 oksüdeerijaks, v.a. reag. fluooriga) S+O2=SO2 C+O2=CO2 2C+O2=2CO Reag. liitainetega: Veega: Cl2+H2O=HClO+HCl 2F2+2H2O=4HF+O2 (põleb vees) Halogeniididega: 2NaCl+F2=2NaF+Cl2 NaF + Cl2 Vesinik. H2 H+1/ 1) 1s1 H:H Isotoobid on elemendi teisendid, milles prootonite arv on sama, aga neutronite arv on erinev; seega ka massiarv erinev. Vesiniku isotoobid: Tavaline vesinik ehk prootium: Prootoneid 1, neutroneid 0, nende masside summa e.massiarv seega 1. Raske vesinik e. deuteerium (D): p+ on 1, n0 on 1, massiarv 2. Üliraske vesinik e. triitium (T): p+ on 1, n0 on 2, massiarv 3. Vesiniku leidumine. 75% Päikese ja tähtede massist. Kuna H2 on väga kerge, siis Maa gravitatsioon ei suuda teda kinni hoida. Vähesel määral

Keemia → Keemia
28 allalaadimist
thumbnail
26
doc

Füüsika 12kl astronoomia

prootonite arv aatomis kokku. Massiarvude erinevus tuleneb erinevast neutronite arvust aatomituumast. Isotoope määratletakse elemendi nimega, millele järgneb sidekriips ja nukleonide (prootonite pluss neutronite) arvuga aatomituumas (näiteks raud-57, uraan-238, heelium-3). Sümbolkujul lisatakse elemendi keemilise sümboli ette ülaindeksina nukleonide arv (näiteks 57Fe, 238U, 3He). Erandeid sellele tähistamisele on kaks: · Vesiniku isotoopidel on erinimetused: prootium (vesinik-1), deuteerium (vesinik-2) ja triitium (vesinik-3). Deuteeriumil ja triitiumil on eraldi keemilised sümbolid: D ja T; prootiumil erisümbolit pole. · Radioaktiivsetes ridades olevatel isotoopidel on erinimetused. Isotoopide keemilised omadused on sarnased, kuna elektronkatete ehitus on ühesugune. Isotoopide füüsikalised omadused on aga erinevad, eriti väikese järjenumbriga elementidel.

Füüsika → Füüsika
99 allalaadimist
thumbnail
16
doc

MITTEMETALLID

MITTEMETALLID Mittemetallide üldiseloomustus. Mittemetalle on 22. Lihtainetena esinevad nad gaaside (H2, O2, N2, F2, Cl2, väärisgaasid), vedeliku (Br2) või tahketena (B, Si, C, P, S, I2 jt.). Perioodilisuse süsteemis paiknevad mittemetallid perioodide lõpus. Mittemetallide aatomite väliselektronkihil on enamikul juhtudesl üle kolme elektroni. Mittemetalli aatomitele on iseloomulik liita keemiliste reaktsioonide käigus elektrone. Seejuures aktiivsemad mittemetallid moodustavad negatiivselt laetud ioone (halogeniidioonid). Neil juhtudel esinevad mittemetallid oksüdeerijatena. Elementide aatomite omadus liita elektrone suureneb perioodis väärisgaasi suunas; rühmas suureneb alt ülespoole (aatomiraadiuse vähenemise suunas). Kõige aktiivsem mittemetall on fluor. Mittemetallide elektronnegatiivsus ning keemiline aktiivsus väheneb reas: F, O, Cl, N, Br, I, S, C, H, P, Si, Xe Tüüpiliste mittemetall...

Keemia → Keemia
151 allalaadimist
thumbnail
11
doc

Anorgaaniline keemia I

1.Vesinik Arvatavasti sai vesiniku esmakordselt 16.saj. saksa loodusteadlane T.Paracelsus. Uuris põhjalikumalt ja vesiniku avastajaks peetakse hoopis H. Cavendishi (1776). Elementaarse loomuse avastajaks on A. Lavoisier 1783. Elemendina: mõõduka aktiivsusega, o.-a. 1, 0, -1 3 isotoopi: 1H ­ prootium ("taval." vesinik) ­ see on nn harilik vesinik, mille aatomi tuumas on ainult üks prooton. 2H = D ­ deuteerium ("raske vesinik") ­ aatomi tuumas on 1 prooton ja 1 neutron. ­ looduses (Maal) 6800 korda vähem aatomeid ; D 2 kasut. aeglustina aatomienergeetikas ja vesinikupommi komponendina. Avastati H. C. Urey jt poolt 1931.a. 3H = T ­ triitium ("üliraske vesinik") ­ aatomi tuumas on 1 prooton ja 2 neutronit.

Keemia → Anorgaaniline keemia
97 allalaadimist
thumbnail
304
doc

ELEMENTIDE RÜHMITAMISE PÕHIMÕTTED

mille kergesti loovutab → H+-ioon (prooton, vesinik(1+)ioon) võib ka siduda elektroni → H- (hüdriidioon, esineb hüdriidides) Perioodilisusesüsteemis paigutatakse (tänapäeval) 1. rühma 2.1.1. Üldiseloomustus Gaasiline vesinik – sai esimesena Paracelsus XVI saj. – uuris põhjalikult H.Cavendish, 1776 – elementaarne loomus: A.Lavoisier, 1783 Elemendina: mõõduka aktiivsusega, o.-a. 1, 0, -1 3 isotoopi: 1 H – prootium (“taval.” vesinik) 2 H = D – deuteerium (“raske vesinik”) – looduses (Maal) 6800 korda vähem aatomeid 3 H = T – triitium (“üliraske vesinik”) Sisaldus maakoores massi järgi väike (0,87%) aatomite arvu järgi suur (17% aatomi-%) leviku poolest Maal 9. kohal universumis kõige levinum element Keemis- ja sulamistemperatuurid väga madalad 20,4 K 14 K 2.1.2. Saamine

Keemia → Keemia
72 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun