KÕRGEM MATEMAATIKA III Matemaatilise analüüsi elemendid 3. Määramata integraalid Õppekirjandus: [1] Abel, E., Kokk, K. Kõrgem matemaatika (Harjutusülesanded). EMS, Tartu, 2003. [2] Lõhmus, A., Petersen, I., Roos, H. Kõrgema matemaatika ülesannete kogu. "Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3.1 Algfunktsioon ja määramata integraal
1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega: Maatriksi järk tähistab maatriksi mõõtmeid: A on m*n järku maatriks. Liigid: · Ruutmaatriks (m=n) · Diagonaalmaatriks ruutmaatriks, mille peadiagonaalis arvud, muud elemendid 0-d. · Ühikmaatriks diagonaalmaatriksi erijuht. Peadiagonaali elemendid 1-d. Täh E. · Nullmaatriks kõik nullid. Täh . 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). · Korrutamine arvuga: korrutades maatriksit reaalarvuga, muutuvad kõik elemendid, selle arvu korra suuremaks. · Maatriksite liitmine: mõõtmed peavad olema samad. Ühemaatriksi elemendid liidetakse teise maatriksi vastavate elementidega: A = (a ij) ja B = (bij) A+B =(cij) kus cij =...
1. Mis on staat anal, võrdl staat anal, dünaamiline anal, mis on eesmärgiks? *Staatilises e. tasakaaalu analüüsis on valitud muutujate väärtused sellised, et süsteemi seisund säilub (s.t. puudub tendents muutuda). Tasakaal ei ole tingimata ideaalne seis. Osaline turutasakaal (lineaarne & mittelineaarne mudel), üldine turutasakaal. *Võrdlevstaatiline analüüs tegeleb erinevate tasakaalu seisundite võrldemisega (vastab erinevate parameetrite ja välimuutujate komplektidele). Kui mingi parameeter või välimuutuja muutub, läheb süsteem tasakaalust välja, siis võrreldakse uut ja vana. VSA on kvalitatiivne või kvantitatiivne. Peaülesanne leida sisemuutujate muudumäärad sõltuvalt parameetri või välimuutuja muutudst. *Dünaamilises analüüsis jälgitakse muutujate teed ajas ning kas antud aja jooksul muutujad koonduvad kindlateks tasakaaluväärtuseks. Täiendab eelmist kahte, sest uurib kas tasakaal on üldse saavutatav. Oluline on, et muutujad seosta...
PARABOOL Parabooliga puututakse kokku juba koolimatemaatikas. Joonistatakse graafikuid, mis avanevad üles- või allapoole, mille haripunkt on koordinaatide alguspunktis või mitte, mis lõikavad x-telge või mitte jne. Järgmine joonis kirjeldab, millise tasandiga tuleb koonust lõigata, et nende lõikejoon oleks parabool. Järgnevalt vaatleme, kuidas parabool defineeritakse. Tegeleme parabooli võrrandiga, mis erineb pisut koolimatemaatikas õpitust. Lisaks joonistame paraboole, mis võivad avaneda nii üles või alla kui ka vasakule või paremale. Esitatud on nii teooria kui näiteülesanded. Iseseisvalt on võimalik läbi lahendada harjutusülesandeid, kus tuleb siiski paber ja pliiats appi võtta. Arvuti teel saab lahendada testi, mis aitab parabooli võrrandist selgust luua. Parabool on joon, mille iga punkti X(x; y) kaugus ühest kindlast sirgest (juhtjoonest) võrdub selle punkti kaugusega ühest kindlast p...
KORDAMISKÜSIMUSED 2015/2016 Kõrgem matemaatika MTMM. 00.145 (6EAP) 1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega. Kui aij on reaalarvud ning i = 1; 2;...;m ja j = 1; 2;...; n, siis tabelit: nimetatakse täpsemalt (m x n)-maatriksiks ja kasutatakse tähistusi Am x n või Amn. Arvupaari (m; n) nimetatakse maatriksi A mõõtmeteks.
Funktsiooni piirv¨ a¨ artuse arvutamise n¨ aidis¨ ulesaded N¨ aide 1. Leida piirv¨aa¨rtus x2 + x + 1 lim . x-1 x2 - x + 1 Lahendus. Vaadeldav funktsioon on elementaarfunktsioon ja punkt x = -1 kuulub tema m¨aa¨ramis- piirkonda. Seega x2 + x + 1 1-1+1 1 lim 2 = = . x-1 x - x + 1 1+1+1 3 N¨ aide 2. Leida piirv¨aa¨rtus 1 - 3 x2 + 1 ...
Igas kontrolltöös on 4 küsimust, millest üks on valitud jämedas kirjas (bold face) olevate teemade hulgast (see on kõige olulisem materjal), 2 küsimust on valitud ülejäänud teemadest ja viimase 4-nda küsimuse all on võimalik kirjutada omal valikul 1/4-1/2 lk teksti antud programmi ulatuses. 1. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusüuhik ja positiivne suund. Kasutades neid kolme parameetrit, saab arvteljepunktidele seada vastavusse reaalarvud. Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a − ε, a + ε), kus ε > 0 on ümbruse raadius. Arv x kuulub arvu a ümbrusesse (a − ε, a + ε) siis ja ainult siis, kui selle arvu kaugus arvteljelon arvust a väiksem kui ε, st |x − a| < ε. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suvalist poollõiku (a − ε, a], kus ε > 0. Arv x kuulub arvu a vasakpoolsesse ümbrusesse (a − ε, a] siis ja ainult siis, kui sel...
Microsoft Excel 16.0 Answer Report Worksheet: [Kodutöö OPERATSIOON 3 SOLVER.xlsx]ül 1 Report Created: 21.5.2018 20:36:19 Result: Solver found a solution. All Constraints and optimality conditions are satisfied. Solver Engine Engine: Simplex LP Solution Time: 0,078 Seconds. Iterations: 8 Subproblems: 0 Solver Options Max Time Unlimited, Iterations Unlimited, Precision 0,000001, Use Automatic Scaling Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative Objective Cell (Max) Cell Name Original Value Final Value $J$28 Kasum arvutuslik 0 30050 Variable Cells Cell Name Original Value Final Value Integer $C$29 X väärtused A 0 200 Contin $D$29 X väärtused B ...
Praktikum II Pöördpendel liikuval alusel ja süsteemi stabiliseerimine tagasisidega 1.Pöördpendli lihtsustatud mudel (vt demoks nt https://youtu.be/bENXhqIPkBs ) m l x F M Olekumudeli muutujad ja parameetrid: - pendli nurk [rad] x aluskäru asend [m] M aluskäru mass [kg] m pendli varda mass [kg] l - kaugus pendli varda raskuskeskmeni [m] g - raskuskiirendus [m/s2] F jõud aluskäru liigutamiseks [N] (mudeli sisend u) Olekumudel (olekuvõrrandi maatriksid) ja olekumuutujate vektor X x1 - nurk X& = A X + B U & x - nurga tuletis ...
1.Määramispiirkond = katkevuskohad 2.Nullkohad X 0 : y=0 murru korral mõlemad osad 0-ga võrduma -¿ <0 murru korral korrutiseks ¿ 3.Pos/neg piirkond +¿ : y >0 X + joonis X¿ 4.Ekstr.kohad X e : y ´ =0 , murru korral ülemine osa nulliga võrduma 5.Ekst.punktid- asendad ekstr. kohad alg v-sse 6.Kasvamine/kahanemine X : y ´ > 0 X : y ´ < 0 murru korral korrutiseks+ joonis ,max,min ekstr. 7. Käänukoht X K = y ´ ´ =0 murru korral ülemine osa 0-ga võrduma 8.Käänup. asendad käänukohad algv-sse 9.Kumerus/nõgusus X : y ´ ´ < 0 X : y ´ ´ > 0 murru korral korrutiseks + joonis pos-nõgus, neg- kumer 10.Asümptoodid: PA-katkevuskohad f (x ) b1,2 = lim [ f ( x )-kx ] KA- y=kx+b k =xlim ± x x ± Määramisp...
Selle pärast on oluline rõhutada, et meie koordinaa- Definitsioon 13.24 did kehtivad vaid nimetatud ba- Vektorite süsteemi e1 , . . . , en Rn : asi jaoks. Kursustes Algebra 1 ja Kõrgem matemaatika 2 defi- e1 := (1, 0, 0, . . . , 0), neeritakse vektorruumi, baasi ja koordinaatide mõiste palju üldi- e2 := (0, 1, 0, . . . , 0), semalt. .. (13.5) . en := (0, . .
Kõrgem matemaatika 1 kordamisküsimused 2017/2018 1. Maatriksi definitsioon. Maatriksi elemendid. Maatriksi järk. Ruutmaatriks. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Vastandmaatriks. Lineaarsete tehete omadused. Transponeeritud maatriks. Maatriks on arvude, funktsioonide või muude elementide korraldatud kogum × . Maatriksil on m rida ja n veergu, kus a11; a12; ...a1n; jne on maatriksi elemendid. Kui me räägime järkudest, siis esimest järku matriks on a, teist on a, a, a, a, kui räägime kolmandat järku siis a,a,a,a,a,a,a,a,a (9) Ruutmaatriksi ridade ja veergude arv on sama. Kui me räägime skalaariga korrutamisest, see tähendab lihtslat arv korrutame matriksiga Maatriksit, milles kõik elemendid on nullid, nimetatakse nullmaatriksiks ja tähistatakse . Maa...