=166,32 (cm ) 166 (cm ) ümardada kolme tüvenumbrini, sest andmetes on kõige täpsem mõõtarv nii 3 Vastus. Pindala on 166 cm . 29.Kolmnurkne püstprisma - põhjadeks ehk Ül.1188 põhitahkudeks on kaks võrdset komnurka; Selgitada püstprisma elemente. kolmnurkade külgi nimetatakse püstprisma n=3 põhiservadeks; külgtahkudeks kolm tippe 6, külgservi 3, põhiservi 6, külgtahke 3 ristkülikut; ristkülikute ühiseid servi n=4 nimetatakse püstprisma külgservadeks; tippe 8, külgservi 4, põhiservi 8, külgtahke 4 valemid: põhjapindala Sp=ah:2, külgpindala n=5
Hulktahukad 1. Kuup (kõik tahud ruudud) 2. Risttahukas (kõik tahud 3. Korrapärane nelinurkne ristkülikud) püstprisma (põhi ruut, küljed ristkülikud) a h a h b a a a
3 3 =166,32 (cm ) 166 (cm ) ümardada kolme tüvenumbrini, sest andmetes on kõige täpsem mõõtarv nii 3 Vastus. Pindala on 166 cm . 29.Kolmnurkne püstprisma - põhjadeks ehk Ül.1188 põhitahkudeks on kaks võrdset komnurka; Selgitada püstprisma elemente. kolmnurkade külgi nimetatakse püstprisma n=3 põhiservadeks; külgtahkudeks kolm tippe 6, külgservi 3, põhiservi 6, külgtahke 3 ristkülikut; ristkülikute ühiseid servi n=4 nimetatakse püstprisma külgservadeks; tippe 8, külgservi 4, põhiservi 8, külgtahke 4 valemid: põhjapindala Sp=ah:2, külgpindala n=5
S 2ab bc ac c V S p H abc d d a2 b2 c2 b a Kuup S 6a 2 d a V a3 d a 3 a a Püstprisma S t 2S p S k H= l Kü lg pindala S k P H V Sp H A B C Kaldprisma S t 2S p S k Ristlõige Kü lg pindala S k P l
´ ´ C F E A D A B C B püstprismaks, kui kaldprismaks, kui külgtahud on ristkülikud. külgtahkudest vähemalt üks ei ole ristkülik. Püstprisma on korrapärane, kui tema põhjadeks on korrapärased hulknurgad. Korrapärane viisnurkne püstprisma Korrapärane kolmnurkne püstprisma Korrapärane nelinurkne püstprisma Korrapärane hulktahukas ehk platooniline keha ehk regulaarne hulktahukas ................. hulktahukas, mille kõik tahud on kongruentsed korrapärased hulknurgad ja mille igast tipust lähtub võrdne arv servi
Pr Eukleidese teoreem S= Sp =ah 2 a2 =fc Kolmnurkne püstprisma S = ah p P = 2(a+ b) R b a b2 =gc 2
Risttahukas Ruumala: V = a · b · c Täispindala: St = 2(ab + ac + bc) AB - diagonaal Püströöptahukas Põhja pindala: Sp = a · ha Külgpindala: Sk = P · h Ruumala: V = Sp · h Põhja ümbermõõt: P = 2(a + b) Täispindala: St = Sk + 2Sp Korrapärane püstprisma Põhjapindala - kus n on tahkude arv Külgpindala - Sk = a · h · n Silinder Põhja pindala: Sp = Külgpindala: Sk = 2 · · r · h Ruumala: V = Sp · h = · ·r 2 Täispindala: St = Sk + 2Sp = 2 · · r · h + 2 ·
· Tahkudest (külgtahud, 2põhitahku) · Servadest · Tipudest Hulktahukas jaguneb: · Kumerad: prisma, püramiid, korrapärased hulktahukad · Mittekumerad Prisma: Kaldprisma ja püstprisma 2 tahku on paralleelse ja võrdsed põhitahud, ülejäänud tahud on ristkülikud. Kas prisma on korrapärane või mitte sõltub tema põhjast. Kõik kaldprismad on mittekorrapärased prismad. Sk= PH V= SpH Sp sõltub põhja kujundist St= Sk+2Sp Püramiid: Kaldpüramiid ja püstpüramiid 1 tahk on hulknurk ja ülejäänud tahud on ühise tipuga kolmnurgad Kõrgus on tipu kaugust põhjast, alati põhjaga risti. Tipp on külgservade ühine punkt Korrapärased ja mittekorrapärased püramiidid
Kõik kommentaarid