1. 1. N n . , m k . N = 20, n = 5, m = 4, k = 2. . . C nk C Nm--nk C 52 C152 5!15!4!16! 5 4 3 15 14 4 P ( A) = = = = = 0,217 . CN m C 204 2!3!2!13!20! 2 20 19 18 17 2. n , k . , m . n = 10, k = 4, m = 2. . . C km C 42 4!2!8! 43 2 P ( A) = m = 2 = = = = 0,133 . Cn C10 2!2!10! 10 9 15 3. . 15% , 25%, 30%. , ( ) . . : A1 ; A2 ; A3 . , ( ) P ( A) = P ( A1 A2 A3 + A1 A2 A3 + A1 A2 A3 ) = = P( A1 A2 A3 ) + P( A1 A2 A3 ) + P ( A1 A2 A3 ) = = P ( A1 ) P ( A2 ) P ( A3 ) + P ( A1 ) P ( A2 ) P ( A3 ) + P ( A1 ) P ( A2 ) P ( A3 ) = = 0,85 0,75 0,3 +
NB! arvutatakse kordajate absoluutväärtustega. II krit: (on juba tegelikult seletatud eelpool) Baasist viiakse välja see muutuja, mille korral =min. I krit pole kohustuslik, II krit on! Optimaalsuse kriteerium on täidetud kui 0nda rea kõik elemendid on 0. Tehtud arvutuste kontrollimiseks tuleb antud lahendus panna 0. süsteemi. Tõkestamatuse kriteerium: kõik juhtveeru elemendid on 0. 11. Kunstliku baasi meetod, M valimine Kunstliku baasi meetodit kasutatakse kui LP ülesanne on antud kanoonilisel kujul. 0ndas rida korrutatakse läbi -1ga, et saavutada maksimiseerimine. Seejärel pannakse z=x0 ning lahutatakse 0nda rea muutujatest My1,My2,... (muutujaid on täpselt nii palju, kui on kitsendusi) N: z=x1+2x2-x3àmin x1+x2+x3=6 x1 +x3=4 x0 x0=-z= x1+2x2-x3-My1-My2àmax àx0-x1-2x2+x3+My1+My2 =0 Kitsendustele liituvad vastavad muutujad: x1+x2+x3+y1 =6 x1 +x3 +y2=4
2007. aasta matemaatika riigieksami ülesanded koos lahenduste ja kommentaaridega 2 1. ÜLESANNE (5 punkti) Ülesannete tekstid 1 5x 1 I Antud on avaldis 2 , kus x 0 ja x . x 25 x 2 x 0 5 1) Lihtsustage see avaldis. 3 2) Arvutage avaldise väärtus, kui x 2 . Vastus andke täpsusega 10 2. 2 x 2 (9 x 2 x 0 ) 1 II Antud on avaldis , kus x 0 ja x . 1 3x 3 1)
Graafika VBAs Kõiki töölehe pinnal asuvaid objekte käsitletakse kujunditena (põhiklassid Shape ja Shapes) Kujundite tüübid Graafikaobjektid - MS Drawing abil tehtud kujundid Diagrammid (ChartObjects) 60 23 56 50 40 29 32 30 27 13 Pildid (Picture) - imporditud pildid kask 20 45 35 kuusk 10 12 41
DIFERENTSEERIMISE ja INTEGREERIMISE VALEMID y dy Tuletis y = lim = = f ( x) x 0 x dx Integraal f ( x)dx = F ( x) +c , kus d [ F ( x) + c ] = f ( x)dx Diferentseerimise reeglid Diferentseerimise reeglid Integreerimise reeglid Lihtfunktsioon y=(x) Liitfunktsioon y=(u), u=(x) (u +v)'=u'+v', kus u,v=(x) (ux +vx)'=ux'+ vx' (u + v)dx = u dx + v dx (u v)'=u' v' (ux vx)'=ux' vx' (u v)dx = u dx v dx ( u·v ) ' = u'v + v'u (ux·vx)'=ux'v+ vx'u u dv = uv v du ( C·u ) ' = C u' ( C·ux ) ' = C ux' Cu dx= C u dx (u·v·w)' = u'vw + v'uw + w'uv u u x
DIFERENTSEERIMISE ja INTEGREERIMISE VALEMID y dy Tuletis y = lim = = f ( x) x 0 x dx Integraal f ( x)dx = F ( x) +c , kus d [ F ( x) + c ] = f ( x)dx Diferentseerimise reeglid Diferentseerimise reeglid Integreerimise reeglid Lihtfunktsioon y=(x) Liitfunktsioon y=(u), u=(x) (u +v)'=u'+v', kus u,v=(x) (ux +vx)'=ux'+ vx' (u + v)dx = u dx + v dx (u v)'=u' v' (ux vx)'=ux' vx' (u v)dx = u dx v dx ( u·v ) ' = u'v + v'u (ux·vx)'=ux'v+ vx'u u dv = uv v du ( C·u ) ' = C u' ( C·ux ) ' = C ux' Cu dx= C u dx (u·v·w)' = u'vw + v'uw + w'uv u u x
27. Trigonomeetriliste avaldiste integreerimine. 28. Määratud integraal ja selle omadused. 1. Funktsioon. Määramispiirkond, väärtuste hulk. Me vaatleme integraali (sinx,cosx)dx Keskväärtusteoreem (tõestusega). Pöördfunktsioon. 1. Universaalne asendus tan x/2=t Olgu y=f(x) pidev lõigul [a,b] Jaotame lõigu n osaks punktidega 2. Funktsiooni piirväärtus. Teoreemid piirväärtuste x0=a, x1, x2,..,xn=b kohta (tõestusega). J={x0,x1,..,xn} lõigu [a,b] jaotus 3. Lõpmatult vähenevad suurused ja nende järk. Igal lõigukesel xi=xi-xi-1 i=1,2,..,n võtame punkti i =[xi-1,xi] 4. Pi
1. Muutuvad suurused.
Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim
muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi
nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT
ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad
suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed
konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71
1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva
alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a
Kõik kommentaarid