Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

DV võrrandid 1 kontrolltöö Spikker (0)

5 VÄGA HEA
Punktid

Lõik failist

Hariliku Dv Def. – Olgu F-n F(x,y,z) määratud xyz ruumi piirkonnas G. Vahemikus (a,b) määratud funktsioon y=y(x) nim. Võrrandi F(x,y,y`)=0 lahendiks , selles vahemikus, kui ta on pidevalt dif-uv ning (x,y(x),y`(x)) kuulub hulka G ja F(x,y(x),Y`(x))=0
Cauchy ülesanne 1-järku võrrandi jaoks seisneb sellise lahendi y(x) leidmises, mis rahuldab algtingimust
Peano teoreem – Olgu f(x,y) pidev kahemuutuja f-n piirkonnas D. Siis läbi iga punkti (x0,y0)D kulgev vähemalt 1 DV integraalkõver. On tuntud ka Dv lahendi olemasomu teoreemina.
Cauchy teoreem
DV võrrandid 1 kontrolltöö Spikker #1
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2009-12-17 Kuupäev, millal dokument üles laeti
Allalaadimisi 219 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor lMikil Õppematerjali autor
Kairi Kasemetsa 1 kontrolltöö spikker.
Sain väga edukalt kontrolltöö sooritatud

Sarnased õppematerjalid

thumbnail
3
doc

Diferentsiaalvõrrandite 1 Kollokviumi spikker

1.Diferentsiaalvõrrandi mõiste ­ DV nim võrrandit, mis seob sõltumatut muutujat x, otsitavat funktsiooni y=f(x) ja selle tuletisi y', y'',...yn HDV üldkuju: F(x,y,y')=0 ; x-sõltumatu muutuja, y=y(x) otsitav f ja y'=dy/dx otsitava f-i tuletis. Esimest järku HDV normaalkuju: y'=f(x.y) (edasi sama mis üldkujul). Esimest järku HDV sümmeetriline kuju: M(x,y)dx + N(x,y)dy=0. Cauchy ülesanne: {y'=f(x,y) {y(Xo)=Yo * esimest järku HDV jaoks f(x,y) on pidev piirkonnas D=> eksisteerib (Xo; Yo). Kui y=y(x) on teada, siis y'(x) = f(x, y(x)) iga xD korral ; y'(Xo)=f(Xo,y(Xo)) ; y'(Xo)=f(Xo,Yo) ; tan=y'(Xo)=f(Xo;Yo) 2.I järku DV lahend: DV lahend on funktsioon, mille asetamisel võrrandisse same samasuse sõltumatute muutujate suhtes. *Esimest järku DV üldlahendiks nim f-i: y(Xo)=Yo. Lahendi olemasolu ja ühesus: Cauchy teoreem: Olgu f(x;y) pidev piirkonnas D ning olgu tal selles piirkonnas olemas pidev osatuletis f(x,y)/y. Siis läbi iga punkti (Xo;Yo)D kulgeb parajasti üks DV integ

Dif.võrrandid
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y)

Matemaatiline analüüs 2
thumbnail
8
doc

Matemaatiline analüüs 2, kollokvium 3

Contents 1.Kordse integraali mõiste. Kahekordne intgeraal. Kahekordse integraali omadused...............1 2.Regulaarsed ja normaalsed piirkonnad. Kaksikintegraal. Kahekordse integraali arvutamine kaksikintegraali abi..................................................................................................................... 1 3.Muutujavahetus kordses integraalis. Jakobiaan. Polaarkoordinaadid.....................................2 4.Kolmekordne integraal ja selle arvutamine rist-, silinder- ja sfäärkoordinaatides..................3 5.Teist liiki joonintegraal ja Greeni valem.................................................................................4 6.Diferentsiaalvõrrandi mõiste...................................................................................................5 7.Cauchy ülesanne ehk algväärtusülesanne................................................................................ 5 8.Eksaktne diferentsiaalvõrrand.................................

Matemaatiline analüüs 2
thumbnail
20
pdf

Matemaatilise analüüsi kollokvium nr.3

1.Kordse integraali mõiste. Kahemuutuja funktsiooni integraalsumma ja kahekordse integraali definitsioonid. Kahekordse integraali geomeetriline sisu. Kahekordse integraali omadused. Kui eksisteerib , mis ei sõltu osapiirkondadeks Dj jaotamise viisist ega punktide Pj ϵ Dj valikust, siis seda piirväärtust nimetatakse funktsiooni f(x,y) kahekordseks integraaliks üle piirkonna D ja tähistatakse Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = ƒ (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks ∆S1,∆S2,…,∆Sn.Tähistagu ∆Si samaaegselt nii i- ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= ƒ (P1) ∆S1 + ƒ (P2) ∆S2+…+ ƒ (Pn) ∆Sn Seda summat Vn nim funktsiooni ƒ integraalsummaks piirkonnas D Kahekordse integraali geomeetriline sisu :  Olgu ƒ(x,y)≥0. Vaatleme keha Q, mis on ülalt piiratud pinnaga z = (x,y) alt

Matemaatiline analüüs 2
thumbnail
14
odt

DV II KT vastused

DV II teooriatöö kordamisküsimused 1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. V: Kõrgemat järku harilikud diferentsiaalvõrrandid: Üldkuju: F(x, y, y', y'', ..., y(n)) = 0, kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y(n-1)) (1) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. {y(x0) = y0 {y'(x0) = y0(1) {... (2) (n-1) (n-1)

Dif.võrrandid
thumbnail
1
docx

Diferntsiaalvõrrandidte teooria nr. 2

1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. Kõrgemat jär harilikud dvid: Üldkuju: F(x, y, y', y'', ..., y (n)) = 0 (1), kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y (n-1))(2) (( F(x,y, y')=0 (1) ja y' =f(x;y) (2))) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. ***{y(x0) = y0 {y'(x0) = y0(1) {... {y(n-1)(x0) = y0(n-1) ***Lahendi olemasolu : kõrgemat järku DV lahend ­ funktsioon, mille asendamisel võrrandisse saame samasuse F(x, y(x), y'(x), y''(x), ..., y(n)) 0 x. Peano teoreem e. olemasolu teoreem: olgu funktsioon f pidev muutujate x, y, y', y'', ..., y(n-1) piirkonnas D, siis iga punkt (x0, y0, y0(n-1) ) D korral on Cauchy ülesanne {(1);(2)} vähemalt 1 lahend. Cauchy teoreem e. ühesuse tingimused

Dif.võrrandid
thumbnail
8
docx

Dif 2. kollokvium

n Kõrgemat järku harilik DV-Üldkuju(F,x,y,y’,y’’,.., y ),kus x-sõltumatu muutuja,y=y(x) otsitav funkt ja y’.. ' n x , y , y , .. y on otsitava fun tuletised.Lahendiks y=y(x)>y=y(x,C1,C2,..,Cn). Normkuju: y =f ¿ , (n ) y (n−1) ¿(1) . Algtingimused y( x 0 ¿= y 0 ; y( x 0 ¿= y 0 ' ; y n−1 ( x 0 ) = y 0n?

Dif.võrrandid
thumbnail
13
doc

Matemaatiline analüüs 1 kordaisküsimuste vastused

1. Muutuvad suurused. Def. 1 *Suurusi, mis omand erinevaid väärtusi(vaadeldavas protsessis) nim muutuvateks suurusteks. *Suurusi, mis omand. konstantseid püsivaid väärtusi nim jäävateks suurusteks e. konstantideks. *Tähistus: x,y,z...u,v,w,t *NT ühtlane liikumine-> kiirus konstantne v, teepikkus ja aeg muutuvad *Muutuvad suurused on tavaliselt reaalarvud-> geom võime esitada sirgel *absoluutsed konstandid- mistahes protsessis vaadeldavad suurused: =3,14..., e =2,71 1. väärtused on diskreetsed x: x1,x2,x3 (arvjada) 2. väärtused omand pideva alamhulga reaalteljel (+joonised!): *X={x IR|axib} lõik * X={x IR|a0 (joonis) 2. Funktsiooni mõiste Olgu antud 2 suurust x-muutumisp. X, y-muutumisp. Y *Def.1 Me nim funktsiooniks kujutust, mis seab igale x väärtusele piirkonnas X vastavusse suuruse y kindl

Kõrgem matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun