Arvu ruut Arvu ruut Näide 1. Arvu 5 ruut on 25, sest 52 = 5 · 5 = 25. Ruutjuur Antud mittenegatiivse arvu a ruutjuureks nimetatakse sellist mitte- negatiivset arvu b, mille ruut võrdub arvuga a. a =b b2 = a ! Negatiivsest arvust ei saa ruutjuurt võtta. Juure korrutis ab= a b Mittenegatiivsete arvude korrutise ruutjuur võrdub tegurite aritmeetilise ruutjuure korrutisega Jagatise ruutjuur a a = b b Positiivsete arvude jagatiste aritmeetiline ruutjuur võrdub nende arvude aritmeetiliste ruutjuurte jagatisega. Ruut võrrand Võrrandit ax²+bx+c=0, milles a, b ja c on antud arvud (a0) ja x on tundmatu, nimetatakse ruutvõrrandiks. ax² + bx + c = 0 a ruutliikme kordaja ax² ruutliige b lineaarliikme kordaja bx lineaarliige c vabaliige Valem. Ruutvõrrandiks nimetatakse võrrandit, mida saab esitada kujul . Seejuures tähistavad a, b ja c reaalarvulisi kordajaid
4 1 Kui ruutvõrrandil x2 + px + q = 0 on kaks lahendit x1 ja x2, siis: Ruutjuur x1 + x2 = p x1 · x2 = q Antud mittenegatiivse arvu a ruutjuureks nimetatakse sellist mitte- Seda seost kasutatakse ruutvõrrandite koostamisel. negatiivset arvu b, mille ruut võrdub arvuga a. a =b b2 = a
Kui avaldises on sulud, siis teeme esmalt sulgudes olevad tehted. 9. Kuidas leida tõenäosust? Selleks, et leida tõenäosust tuleb soodsate võimaluste arv jagada kõigi võimaluste arvuga. 10. Kuidas koostada sagedustabelit? Koostada tuleb tabel, kus on 3 tulpa. Esimeses tulbas on andmed, teises tulbas sagedus ja kolmandas tulbas suhteline sagedus. Suhtelise sageduse leidmiseks tuleb sagedus jagada objektide koguarvuga. 11. Mis on arvu ruutjuur? Miks negatiivsetel arvudel puudub ruutjuur? Ruutjuureks antud positiivsest arvust nimetatakse niisugust positiivset arvu, mille ruut võrdub antud arvuga. Mittenegatiivsete arvude korrutise ruutjuur võrdub tegurite ruutjuurte korrutisega. Mittenegatiivse arvu ja positiivse arvu jagatise ruutjuur võrdub jagatava ruutjuure ning jagaja ruutjuure jagatisega. Negatiivsetel arvudel puudub ruutjuur, sest pole arvu, mille ruut oleks negatiivne. 12. Kuidas lahendada lineaarvõrrandit? 1) Kui võrrandis on sulud, siis avame need
2 näiteks ruudu ja ringi pindala arvutamisel =3,5 =12,25 2 2 2 2 2 (-4,5) 4 -8 (-1,5) =(-4,5 4) -(-8 2 2 2 1,5) =(-18) -(-12) =324-144=180 2.Arvu ruutjuur - positiivne arv, mille ruut Ül.1271 on ruutjuure märgi all; ruutjuur nullist 2 1) sest 4 =16 5) võrdub nulliga; arvu ruudu pöördtehe; 2) 6) üldiselt =|a|, |a|=a, kui a 0 või |a|=a, kui 3) 7) a<0 4) 8) NB ruutjuurt negatiivsest arvust ei ole
Irratsionaalarvud ei ole avaldatavad lõpmatu perioodilise kümnendmurruna. Ratsionaalarvude hulk Q ja irratsionaalarvude hulk I moodustavad kokku reaalarvude hulga R. Reaalarvude hulga omadused Reaalarvude hulk on järjestatud lõpmatu hulk Reaalarvude hulk on pidev nendele arvudele vastavad punktid katavad kogu arvtelje Reaalarvude hulk on kinnine liitmise, lahutamise, korrutamise ja nullist erineva arvuga jagamise suhtes. Ruutjuur mittenegatiivsest reaalarvust on reaalarv. Ülesannete lahendamisel on vaja teada tehetes osalevate liikmete nimetusi liidetav +liidetav = summa; vähendatav - lahutatav = vahe; tegur · tegur = korrutis; jagatav : jagaja = jagatis. NB! Lahutamine on liitmise pöördtehe ning jagamise on korrutamise pöördtehe. Tehete järjekord keerulisema avaldise väärtuse arvutamisel: 1)Kui avaldises esinevad ka sulud, siis sooritatakse kõigepealt sulgudes olevad tehted;
1. Absoluutväärtus reaalarvuga x määratud mittenegatiivne reaalarv 2. Abstsisstelg x telg 3. Aksioom lause, mida loetakse õigeks ilma põhjenduseta. Aksioomid võetakse aluseks teiste väidete põhjendamisel. 4. Algarv Ühest suurem naturaalarv, mis jagub vaid ühe ja iseendaga. 5. Algebraline murd murd, mille lugejaks ja / või nimetajaks on muutujaid sisaldav avaldis. 6. Algebraline ruutjuur arv, mille ruut on antud arv a. 7. Algkoordinaat antud sirge ja ordinaattelje lõikepunkti ordinaat. 8. Algtegur naturaalarvu algarvuline tegur. 9. Algteguriteks lahutamine naturaalarvu esitamine algarvuliste tegurite korrutisena. 10. Alusnurk võrdhaarse kolmnurga või trapetsi aluse ja haara vaheline nurk. 11. Apoteem 1. korrapärase hulknurga keskpunktist küljele tõmmatud ristlõik. 12. 2. korrapärase püramiidi tipust külgtahule tõmmatud kõrgus. 13
X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b N korral a b b a . Liitmis kommutatiivsus. 2. Iga a, b N korral a b b a . Korrutamise kommutatiivsus. 3. Iga a, b, c N korral a b c a b c . Liitmise assotsiatiivsus. 4. Iga a, b, c N korral a b c a b c . Korrutamise assotsiatiivsus. 5. Iga a, b, c N korral a b c a b a c
X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b N korral a b b a . Liitmis kommutatiivsus. 2. Iga a, b N korral a b b a . Korrutamise kommutatiivsus. 3. Iga a, b, c N korral a b c a b c . Liitmise assotsiatiivsus. 4. Iga a, b, c N korral a b c a b c . Korrutamise assotsiatiivsus. 5. Iga a, b, c N korral a b c a b a
Sellele kes kasutada oskab on ikka kasu..
Kõik kommentaarid