Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Ruutjuur (5)

4 HEA
Punktid
Ruutjuur #1
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2008-04-22 Kuupäev, millal dokument üles laeti
Allalaadimisi 205 laadimist Kokku alla laetud
Kommentaarid 5 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor ergo Õppematerjali autor

Sarnased õppematerjalid

thumbnail
2
odt

Matemaatika raudvara: Ruutjuur

Arvu ruut Arvu ruut Näide 1. Arvu 5 ruut on 25, sest 52 = 5 · 5 = 25. Ruutjuur Antud mittenegatiivse arvu a ruutjuureks nimetatakse sellist mitte- negatiivset arvu b, mille ruut võrdub arvuga a. a =b b2 = a ! Negatiivsest arvust ei saa ruutjuurt võtta. Juure korrutis ab= a b Mittenegatiivsete arvude korrutise ruutjuur võrdub tegurite aritmeetilise ruutjuure korrutisega Jagatise ruutjuur a a = b b Positiivsete arvude jagatiste aritmeetiline ruutjuur võrdub nende arvude aritmeetiliste ruutjuurte jagatisega. Ruut võrrand Võrrandit ax²+bx+c=0, milles a, b ja c on antud arvud (a0) ja x on tundmatu, nimetatakse ruutvõrrandiks. ax² + bx + c = 0 a ruutliikme kordaja ax² ruutliige b lineaarliikme kordaja bx lineaarliige c vabaliige Valem. Ruutvõrrandiks nimetatakse võrrandit, mida saab esitada kujul . Seejuures tähistavad a, b ja c reaalarvulisi kordajaid

Matemaatika
thumbnail
2
pdf

Ruutjuur

4 1 Kui ruutvõrrandil x2 + px + q = 0 on kaks lahendit x1 ja x2, siis: Ruutjuur x1 + x2 = ­p x1 · x2 = q Antud mittenegatiivse arvu a ruutjuureks nimetatakse sellist mitte- Seda seost kasutatakse ruutvõrrandite koostamisel. negatiivset arvu b, mille ruut võrdub arvuga a. a =b b2 = a

Matemaatika
thumbnail
3
doc

Matemaatika teooria

Kui avaldises on sulud, siis teeme esmalt sulgudes olevad tehted. 9. Kuidas leida tõenäosust? Selleks, et leida tõenäosust tuleb soodsate võimaluste arv jagada kõigi võimaluste arvuga. 10. Kuidas koostada sagedustabelit? Koostada tuleb tabel, kus on 3 tulpa. Esimeses tulbas on andmed, teises tulbas sagedus ja kolmandas tulbas suhteline sagedus. Suhtelise sageduse leidmiseks tuleb sagedus jagada objektide koguarvuga. 11. Mis on arvu ruutjuur? Miks negatiivsetel arvudel puudub ruutjuur? Ruutjuureks antud positiivsest arvust nimetatakse niisugust positiivset arvu, mille ruut võrdub antud arvuga. Mittenegatiivsete arvude korrutise ruutjuur võrdub tegurite ruutjuurte korrutisega. Mittenegatiivse arvu ja positiivse arvu jagatise ruutjuur võrdub jagatava ruutjuure ning jagaja ruutjuure jagatisega. Negatiivsetel arvudel puudub ruutjuur, sest pole arvu, mille ruut oleks negatiivne. 12. Kuidas lahendada lineaarvõrrandit? 1) Kui võrrandis on sulud, siis avame need

Matemaatika
thumbnail
18
pdf

8. klassi raudvara: PTK 6

2 näiteks ruudu ja ringi pindala arvutamisel =3,5 =12,25 2 2 2 2 2 (-4,5) 4 -8 (-1,5) =(-4,5 4) -(-8 2 2 2 1,5) =(-18) -(-12) =324-144=180 2.Arvu ruutjuur - positiivne arv, mille ruut Ül.1271 on ruutjuure märgi all; ruutjuur nullist 2 1) sest 4 =16 5) võrdub nulliga; arvu ruudu pöördtehe; 2) 6) üldiselt =|a|, |a|=a, kui a 0 või |a|=a, kui 3) 7) a<0 4) 8) NB ruutjuurt negatiivsest arvust ei ole

Matemaatika
thumbnail
53
ppt

Reaalarvud ( slaidid )

Irratsionaalarvud ei ole avaldatavad lõpmatu perioodilise kümnendmurruna. Ratsionaalarvude hulk Q ja irratsionaalarvude hulk I moodustavad kokku reaalarvude hulga R. Reaalarvude hulga omadused Reaalarvude hulk on järjestatud lõpmatu hulk Reaalarvude hulk on pidev ­ nendele arvudele vastavad punktid katavad kogu arvtelje Reaalarvude hulk on kinnine liitmise, lahutamise, korrutamise ja nullist erineva arvuga jagamise suhtes. Ruutjuur mittenegatiivsest reaalarvust on reaalarv. Ülesannete lahendamisel on vaja teada tehetes osalevate liikmete nimetusi liidetav +liidetav = summa; vähendatav - lahutatav = vahe; tegur · tegur = korrutis; jagatav : jagaja = jagatis. NB! Lahutamine on liitmise pöördtehe ning jagamise on korrutamise pöördtehe. Tehete järjekord keerulisema avaldise väärtuse arvutamisel: 1)Kui avaldises esinevad ka sulud, siis sooritatakse kõigepealt sulgudes olevad tehted;

Matemaatika
thumbnail
4
doc

Matemaatika mõisted

1. Absoluutväärtus ­ reaalarvuga x määratud mittenegatiivne reaalarv 2. Abstsisstelg ­ x ­ telg 3. Aksioom ­ lause, mida loetakse õigeks ilma põhjenduseta. Aksioomid võetakse aluseks teiste väidete põhjendamisel. 4. Algarv ­ Ühest suurem naturaalarv, mis jagub vaid ühe ja iseendaga. 5. Algebraline murd ­ murd, mille lugejaks ja / või nimetajaks on muutujaid sisaldav avaldis. 6. Algebraline ruutjuur ­ arv, mille ruut on antud arv a. 7. Algkoordinaat ­ antud sirge ja ordinaattelje lõikepunkti ordinaat. 8. Algtegur ­ naturaalarvu algarvuline tegur. 9. Algteguriteks lahutamine ­ naturaalarvu esitamine algarvuliste tegurite korrutisena. 10. Alusnurk ­ võrdhaarse kolmnurga või trapetsi aluse ja haara vaheline nurk. 11. Apoteem ­ 1. korrapärase hulknurga keskpunktist küljele tõmmatud ristlõik. 12. 2. korrapärase püramiidi tipust külgtahule tõmmatud kõrgus. 13

Matemaatika
thumbnail
10
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a . Liitmis kommutatiivsus. 2. Iga a, b  N korral a  b  b  a . Korrutamise kommutatiivsus. 3. Iga a, b, c  N korral a   b  c    a  b   c . Liitmise assotsiatiivsus. 4. Iga a, b, c  N korral a   b  c    a  b   c . Korrutamise assotsiatiivsus. 5. Iga a, b, c  N korral a   b  c   a  b  a  c

Matemaatika
thumbnail
5
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a . Liitmis kommutatiivsus. 2. Iga a, b  N korral a  b  b  a . Korrutamise kommutatiivsus. 3. Iga a, b, c  N korral a   b  c    a  b   c . Liitmise assotsiatiivsus. 4. Iga a, b, c  N korral a   b  c    a  b   c . Korrutamise assotsiatiivsus. 5. Iga a, b, c  N korral a   b  c   a  b  a 

Matemaatika




Meedia

Kommentaarid (5)

Apollon profiilipilt
Apollon: Ei, matemaatika on minule liiast.

Sellele kes kasutada oskab on ikka kasu..
22:16 16-02-2009
 profiilipilt
: Mõne ülesande sain tehtud, aga targemaks suuremat ikka ei saanud:(
19:05 28-11-2011
bond2001 profiilipilt
bond2001: aitäh
14:47 27-02-2009



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun