Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi

Prisma (4)

3 KEHV
Punktid
Vasakule Paremale
Prisma #1 Prisma #2 Prisma #3 Prisma #4 Prisma #5 Prisma #6 Prisma #7 Prisma #8 Prisma #9 Prisma #10 Prisma #11 Prisma #12
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 12 lehte Lehekülgede arv dokumendis
Aeg2009-09-11 Kuupäev, millal dokument üles laeti
Allalaadimisi 280 laadimist Kokku alla laetud
Kommentaarid 4 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor A U Õppematerjali autor

Sarnased õppematerjalid

thumbnail
13
ppt

PRISMA

Kuubi diagonaal d = 3a Risttahuka diagonaal d = a2 + b2 + c2 Korrapärane ehk võrdkülgne kolmnurk 3a h= 2 h 2 3a S= 4 a Prisma diagonaal Kui n=3 - diagonaalid puuduvad Prisma diagonaallõige Kui prisma põhjal on n tippu, siis saab ühest servast joonestada n-3 diagonaallõiget Kokku erinevaid diagonaallõikeid Kui n=3 n(n - 3) - diagonaallõiked puuduvad 2 Vertikaalne lõige, mis jaotab keha ruumvõrdseteks osadeks NB! Suurim diagonaallõige! Kas on küsimusi? ?

Kategoriseerimata
thumbnail
1
doc

Prisma

Ande Andekas-Lammutaja Matemaatika ­ Prisma Prismaks nimetatakse hulktahukat, mille kaks tahku on paralleelsed kumerad hulknurgad ja kõik ülejäänud tahud on rööpkülikud, millel on kummagi hulknurgaga üks ühine külg. Paralleelseid hulknurki nimetatakse prisma põhjadeks, nende külgi prisma põhiservadeks. Rööpkülikuid nimetatakse prisma külgtahkudeks ja külgtahkude ühiseid servi prisma külgservadeks. Kui prisma põhjaks on n-nurk, siis nimetatakse prismat n-nurkseks prismaks. Prisma külgservad on võrdsed ja paralleelsed. Püstprismaks nimetatakse prismat, mille külgservad on risti põhjaga. Kaldprismaks nimetatakse prismat, mille külgservad ei ole risti põhjaga. Prisma kõrguseks nimetatakse prisma põhjadevahelist kaugust ja seda määravat ristlõiku

Matemaatika
thumbnail
3
rtf

Ruumiliste kujundite tutvustus (kuup, risttahukas, prisma, püramiid) (8.klass)MSword

V=a·b·c St = 2 · (a · b + a · c + b · c) Näide Näide: Olgu risttahuka servad a=2cm, Risttahuka servad a=2cm, b=3cm, c=4cm, siis täispindala b=3cm, c=4cm, siis tema ruumala St=2 · (2 · 3 + 2 · 4 + 3 · 4)=2·26=52cm2. V = 2 · 3 · 4 = 24 cm3. Kolmnurkne püstprisma Kolmnurkse püstprisma põhiservad on a, b, c; põhja kõrgus on h ja prisma enda kõrgus on H. Prisma ruumala saame Prisma täispindala leiame samm haaval. kui põhja pindala korrutame 1) Leiame põhja ümbermõõdu prisma kõrgusega: P=a+b+c 2) Leiame külgpindala V = Sp · H Sk = P · H 3) Leiame põhja pindala

Matemaatika
thumbnail
1
doc

Hulknurgad

mitmetahulised nurgad on samuti võrdsed (nt. tetraeeder ­ 4 võrdkülgset kolmnurkset tahku, oktaeeder ­ 8, ikosaeeder ­ 20 , KUUP e. heksaeeder ­ 6 ruudukujulist tahku, dodekaeeder ­ 12 võrdkülgset viisnurkset tahku). Prisma ­ hulktahukas, mille 2 tahku on vastavalt paralleelsete ja võrdsete külgedega hulknurgad ning ülejäänud tahud rööpkülikud, millel on kummagi hulknurgaga üks ühine külg. Paralleelsed tahud on põhjad, ülejäänud tahud on külgtahud. Prisma diagonaaltasand ­ tasand, mis läbib kahte mitte ühele tahule kuuluvat külgserva. Püstprisma - kui külgservad on põhjaga risti. Kui ei ole, siis on kaldprisma (külgtahud on rööpkülikud). Püstprisma külgpindala ­ põhja ümbermõõt*kõrgus. Korrapärane prisma ­ põhjadeks on korrapärased hulknurgad. Mittekorrapärane prisma ­ prisma, mis ei ole püstprisma või mille põhjaks pole korrapärane hulknurk. Rööptahukas ­ kõik tahud on rööpkülikud.

Matemaatika
thumbnail
17
doc

Valemid ja Mõisted

kindlast punktis (O), mida nim. Ringi keskpunktiks, on mitte suurem kui r. Pindala: S= r² Ümbermõõt: Ü=2 r Sektor: Mõiste: Sektoriks nimetatakse ringi osa, mida piiravad kaks raadiust ja nende otspunktide vahel asuv vastava ringjoone kaar. Pindala: S= r²n / 360 Kaar: Mõiste: Ringjoone kaareks nimetatakse ringjoone osa tema kahe punkti vahel. Ringjoone kaarepikkus: l= rn / 180 , l=xr 6. Prisma: Mõiste: Prisma on ruumiline kujund ehk keha, millel on kaks põhitahku, mis on omavahel võrdsed ja asuvad paralleelsetel tasanditel. Põhitahke ühendavad külgtahud. Liigid: 1. Püst-ja kaldprisma 2. Korrapärased ja mittekorrapärased 3. kolmnurksed, nelinurksed jne prismad. Pindala: St=Sk+2·Sp Ruumala: V= h·Sp 7. Püramiid: Mõiste: Püramiidiks nim. Hulktahukat, mille üks tahk on hulknurk ja kõik ülejäänd tahud ühise tipuga kolmnurgad.

Matemaatika
thumbnail
4
doc

Matemaatika mõisted

35. Koonus ­ keha, mille moodustab ühe oma kaateti ümber pöörlev täisnurkne kolmnurk. 36. Koordinaadid ­ arvud, mis määravad üheselt punkti asukoha tasandil. 37. Kordarv ­ naturaalarv, mis on esitatav ühest erinevate naturaalarvude korrutisena. 38. Korrapärane hulknurk ­ kumer hulknurk, mille kõik küljed ja sisenurgad on võrdsed. 39. Korrapärane kolmnurk ­ võrdkülgne kolmnurk. 40. Korrapärane prisma ­ püstprisma, mille põhi on korrapärane hulknurk. 41. Korrapärane püramiid ­ püramiid, mille külgservad on võrdsed ja põhjaks on korrapärane hulknurk. 42. Kraad ­ ringjoone kaare või vastava kesknurga mõõtühik. 43. Kuup ­ 1. risttahukas, mille kõik servad on võrdsed. 44. Kõõl ­ joone kaht punkti ühendav lõik. 45. Lineaarfunktsioon ­ kahe suuruse x ja y vaheline seos kujul y = ax + b ; ax on lineaarliige, b vabaliige; graafik on sirge. 46

Matemaatika
thumbnail
4
doc

Eksami materjal

Matemaatika 9.klass 1.Ühenimeliste murdude summa on murd,mille nimetajaks on murdude ühine nimetaja ja lugejaks murdude lugejate summa. (Näide1) 2.Harilike murdude korrutis on murd,mille lugejaks on nende murdude lugejate korrutis ja nimetajaks murdude nimetajate korrutis.(Näide2) Harilike murdude jagatis on murd,mis saadakse esimese murru korrutamisel teise murru pöördarvuga.(Näide3) 3,4-kümnendmurrud.(Näide4) 5.negatiivsed ja erimärgilised arvud.(Näide5) 6.sulud,astendamine,korrutamine,jagamine,liitmine,lahutamine 7. 35=3*3*3*3*3=243.(Näide6) 8.(Näide8) Ruutude vahe valem: a² - b² = (a+b)(a-b) Vaheruudu valem: (a - b)² = a² - 2ab + b² Summaruudu valem: (a + b)² = a² + 2ab + b² Kuupide summa valem: a³ + b³ = (a + b)(a² - ab + b²) Kuupide vahe valem: a³ - b³ = (a - b)(a² + ab + b²) Summakuubi valem: (a + b)³ = a³ + 3a²b + 3ab² + b³ Vahekuubi valem: (a - b)³ = a³ - 3a²b + 3ab² - b³ 9.arvu ruutjuureks nime

Matemaatika
thumbnail
2
docx

Matemaatika põhimõisted. Definitsioon

Matemaatika põhimõisted. Definitsioon. Milline peab olema definitsioon? Lühike, tabav ja täpne. Adekvaatne ning ei tohi defineeritavaga sõnaliselt kattuda. Milline peab olema algmõiste? Ei vaja selgitust, on sobiv klassifitseerimiseks. Mis on aksioom? Väide, mille tõesuses pole kahtlust. Teoreem-lause, mille õigsus tõestatakse faktidele tuginedes arutluse kaudu. Millest koosneb teoreem? Eeldus ja väide Nurk-geomeetriline kujund, mille moodustavad 2 ühest ja samast punktist väljuvat kiirt. Sirgnurk-nurk, mille haarad moodustavad sirgjoone Kõrvunurgad-2 nurka, millel 1 haar on ühine ja mille teised haarad moodustavad sirge Tippnurgad-ühe nurga haarad on teise nurga haarade pikendused üle nende ühise tipu Täisnurk-nurk, mis on 90 kraadi Nürinurk-nurk, mis on suurem kui 90 kraadi, kuid väiksem kui 180 kraadi Teravnurk-nurk, mis on väiksem kui 90 kraadi Tipunurk-võrdhaarse kolmnurga haarade vaheline nurk Harilik murd-näitab, mitmeks võrdseks osaks on tervik jaotatud

Matemaatika



Lisainfo

näite ülesanded , ning lahendused , lisaks valemid

Märksõnad

Mõisted


Meedia

Kommentaarid (4)

Kadiii profiilipilt
Kadiii: nelinurkne püstprisma oleks võinud ka sees olla :)
23:15 13-01-2011
recmadis profiilipilt
Madis Sala: Midagi ta nüüd oli ka.
07:05 21-12-2010
 profiilipilt
: võiks põhjalikum olla
21:08 16-09-2009





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun