Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Natalia Novak Teostatud: Õpperühm: YAMB11 Kaitstud: Töö nr. 5 OT KULGLIIKUMINE Töö eesmärk: Töövahendid: Ühtlaselt kiireneva sirgliikumise Atwoodi masin, lisakoormised teepikkuse ja kiiruse valemi ning Newtoni teise seaduse kontrollimine Skeem 1. Töö teoreetilised alused Atwoodi masinaga saab kontrollida ühtlaselt kiireneva sirgliikumise valemeid ja Newtoni teist seadust. Seejuures on kontroll ligikaudne, sest esineb hõõrdumine. Newtoni teise seaduse põhjal saab tuletada valemi: m1 g 2m m1 a= Selleks, et valem arvestaks ka ploki inertsimomendist tingitud niidi pinge erinevust kummalgi pool plokki, tuleb valemisse tuua ka r-ploki raadius ja I-ploki
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Taivo Tarum Teostatud: Õpperühm: EAEI20 Kaitstud: Töö nr: 5 OT allkiri: Külgliikumine Töö eesmärk Töövahendid Ühtlaselt kiireneva sirgliikumise Atwoodi masin, lisakoormised. teepikkuse ja kiiruse valemi ning Newtoni teise seaduse kontrollimine. 1. Tööülesanne Ühtlaselt kiireneva sirgliikumise teepikkuse ja kiiruse valemi ning Newtoni teise seaduse Kontrollimine. 2. Töövahendid Atwoodi masin, lisakoormised 3. Töö teoreetilised alused 3.1. Atwoodi masin Atwoodi masinaga saab kontrollida ühtlaselt kiireneva sirgliikumise valemeid ja Newtoni teist seadust. Seejuures on kontroll ligikaudne, sest esineb hõõrdumine. Masina põhiosadeks on vertikaalne metallvarb A, millele on
KATSEANDMETE TABELID Tabel 1. Ühtlaselt kiireneval sirgliikumisel läbitud teepikkuse valemi kontroll. m1 = 17,23 g Katse nr s+s, cm t, s t- , s (t- )2, s2 1,8687 0,03246 0,001054 1,7125 -0,12374 0,015312 1 71,5±0,5 1,7756 -0,06064 0,003677 1,9985 0,16226 0,026328 1,8259 -0,01034 0,000107 1,9469 -0,02008 0,000403 1,9803 0,01332 0,000177 2 94,6±0,5 1,9639 -0,00308 0,000009 1,9696 0,00262 0,000007
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Kai Salm Teostatud: Õpperühm: YAMB11 Kaitstud: Töö nr: 5 TO: KULGLIIKUMINE Töö eesmärk: Töövahendid: Ühtlaselt kiireneva sirgliikumise Atwoodi masin, lisakoormised. teepikkuse ja kiiruse valemi ning Newtoni teise seaduse kontrollimine. Skeem 1. Töö teoreetilised alused: Atwoodi masinaga saab kontrollida ühtlaselt kiireneva sirgliikumise valemeid ja Newtoni teist seadust. Seejuures on kontroll ligikaudne, sest esineb hõõrdumine. m1 g 2m m1 Newtoni teise seaduse põhjal saab tuletada valemi: a= Selleks, et valem arvestaks k
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Natalia Novak Teostatud: Õpperühm: YAMB11 Kaitstud: Töö nr: 18 TO: VEDRUPENDLI VABAVÕNKUMINE Töö eesmärk: Töövahendid: Vedrupendli vabavõnkumise perioodi sõl- Vedrud, koormised, ajamõõtja, mõõteskaala, anum tuvuse uurimine koormise massist ja vedru veega. jäikusest. Vedrupendli sumbuvusteguri ja logaritmilise dekremendi määramine. Skeem 1. Töö teoreetilised alused Lihtsamaks võnkumise liigiks on harmooniline võnkumine. Antud töös on selleks võnkumiseks vedrupendli vaba võnkumine õhus. Vedru otsa riputatud koormis on tasakaaluasendis siis, kui temale mõjuv raskusjõud mg on suuruselt võrdne vedru elastsusjõuga k l. Kui viia koormis tasakaaluasendist välja, siis tekib jõud, mis
6. ELEKTRIAJAMITE ÜLESANDED Tootmises kasutatakse töömasinate käitamiseks rõhuvas enamuses elektriajameid. Ka pneumo- ja hüdroajamid saavad oma energia ikka elektrimootoritega käitatavatelt kompressoritelt ja hüdropumpadelt. Elektriajam koosneb elektrimootorist ja juhtimissüsteemist, mõnikord on vajalik veel muundur ja ülekanne. Elektriajamite kursuse põhieesmärk on valida võimsuse poolest otstarbekas elektrimootor, arvestades ka kiiruse reguleerimise vajadust ja võimalikult head kasutegurit. Järgnevad ülesanded käsitlevad selle valikuprotsessi erinevaid külgi. 6.1. Rööpergutusmootori mehaaniliste tunnusjoonte arvutus Ülesanne 6.1 Arvutada ja joonestada rööpergutusmootorile loomulik ja reostaattunnusjoon. Mootori nimivõimsus Pn = 20 kW, nimipinge Un = 220 V, ankruvool Ia = 105 A, nimi- pöörlemissagedus nn = 1000 min-1, ankruahela takistus (ankru- ja lisapooluste mähised) Ra = 0,2 ja ankruahelasse on lülitatud lisatakisti takistu
Tallinna Tehnikaülikool Mehhatroonikainstituut Jüri Kirs, Kalju Kenk Kodutöö D-2 D'Alembert'i printsiip Tallinn 2007 Kodutöö D-2 D'Alembert'i printsiip Leida mehaanikalise süsteemi sidemereaktsioonid kasutades d'Alembert'i printsiipi ja kinetostaatika meetodit. Kõik vajalikud arvulised andmed on toodud vastava variandi juures. Seda, millised sidemereaktsioonid süsteemi antud asendis tuleb leida, on samuti täpsustatud iga variandi juures. Variantide järel on lahendatud ka rida näiteülesandeid koos põhjalike seletustega. Näiteülesandeid d'Alembert'i printsiibi kohta võib lugeda ka E. Topnik' u õpikus ,,Insenerimehaanika ülesannetest IV. Analüütiline mehaanika", Tallinn 1999, näited 14-17, leheküljed 39-49. Kõikides variantides xy-tasapind on horisontaalne, xz- ja yz-tasapinnad aga on vertikaalsed. Andmetes toodud suurused 0 ja 0 on vastavalt pöördenurga ja
Tallinna Tehnikaülikool Mehhatroonikainstituut Jüri Kirs, Kalju Kenk Kodutöö D-3 Kineetilise energia teoreem Tallinn 2009 Kodutöö D-3 Kineetilise energia teoreem Leida mehaanikalise süsteemi mingi keha kiirus ja kiirendus, või mingi ploki nurkkiirus ja nurk- kiirendus vaadeldaval ajahetkel, kasutades kineetilise energia muutumise teoreemi. Mõningates variantides tuleb leida ainult mingi keha kiiruse. See, millise suuruse tuleb variandis leida, on täpsustatud iga variandi juures. Kõik süsteemid on alghetkel paigal. Kõik vajalikud arvulised andmed on toodud vastava variandi juures. Kõik rattad veerevad ilma libisemata. Kõik kehad on absoluutselt jäigad, niidid on venimatud ning kaalutud. Niidid plokkide suhtes kunagi ei libise. Kõik rattad ja plokid on ühtlased ümmargused kettad, kui variandis ei ole spetsiaalselt teisiti mä
Kõik kommentaarid