TTÜ Materjaliteaduse instituut füüsikalise keemia õppetool Töö nr Töö pealkiri 3f Molaarmassi krüoskoopiline määramine Üliõpilase nimi ja eesnimi Õpperühm Reimann Liina KATB41 Töö teostamise Kontrollitud: Arvestatud: kuupäev: 01.04.2015 TÖÖÜLESANNE Aine molaarmassi leidmiseks määratakse lahusti (näit. vee) ja uuritava aine lahuse külmumistemperatuurid. Molaarmass arvutatakse lahuse külmumistemperatuuri languse põhjal. APARATUUR
vee) ja uuritava aine lahuse külmumistemperatuurid. Molaarmass arvutatakse lahuse külmumis-temperatuuri languse põhjal, kasutades selleks Raoult'i II seadust. APARATUUR Jahutamiseks kasutatakse laboratoorset pooljuhtidel töötavat mikrojahutit. Selle töö põhineb Peltier' efektil: kui juhtida elektrivoolu läbi kahe erineva juhi puutekohast, siis kontaktil (sõltuvalt voolu suunast) kas eraldub või neeldub soojust. Mikrojahuti põhisõlmeks on termoelement, mis koosneb kahest erinevast pooljuhist, millest üks on elektron-, teine aukjuhtivusega; pooljuhid on ühendatud metalljuhtmega. TEOREETILISED PÕHJENDUSED. VALEMID Selles osas on esitatud lahjendatud lahuste üldiseid füüsikalisi omadusi. Lahjendatu lahus koosneb vedelast lahustist ja temas lahustunud mittelenduvast ainest. Lahjendatud lahuste üldiste omaduste all mõistetakse neid lahjendatud lahuste omadusi, mis sõltuvad lahustist, kuid ei sõltu lahustunud aine omadustest.
3 MOLAARMASSI KRÜOSKOOPILINE MÄÄRAMINE Üliõpilane Kood Töö teostatud 09.02.2012 .................................... märge arvestuse kohta, õppejõu allkiri TÖÖÜLESANNE Aine molaarmassi leidmiseks määratakse lahusti (näit. vee) ja uuritava aine lahuse külmumistemperatuurid. Molaarmass arvutatakse lahuse külmumistemperatuuri languse põhjal. APARATUUR Jahutamiseks kasutatakse laboratoorset pooljuhtidel töötavat mikrojahutit. Selle töö põhineb Peltier' efektil: kui juhtida elektrivoolu läbi kahe erineva juhi puutekohast, siis kontaktil (sõltuvalt voolu suunast) kas eraldub või neeldub soojust. Mikrojahuti põhisõlmeks on termoelement, mis koosneb kahest erinevast pooljuhist, millest üks on elektron-, teine aukjuhtivusega; pooljuhid on ühendatud metalljuhtmega.
TTÜ Materjaliteaduse instituut füüsikalise keemia õppetool Töö nr 3f MOOLAARMASSI KRÜOSKOOPILINE MÄÄRAMINE Mikk Reinpõld Õpperühm KAOB-41 Töö teostamise Kontrollitud: Arvestatud: kuupäev: 20.02.12 Töö ülesanne. Aine molaarmassi leidmiseks mõõdetakse lahusti (näit. vee) ja uuritava aine lahuse külmumistemperatuurid. Molaarmass arvutatakse Raoult'i II seadust kasutades lahuse külmumis- temperatuuri languse põhjal. Aparatuur. Jahutamiseks kasutatakse laboratoorset pooljuhtidel töötavat mikrojahutit. Selle töö põhineb Peltier' efektil: kui juhtida elektrivoolu läbi kahe erineva juhi puutekohast, siis kontaktil (sõltuvalt voolu suunast) kas eraldub või neeldub soojust. Mikrojahuti põhisõlmeks on termoelement, mis koosneb kahest erinevast pooljuhist, millest üks on elektron-, teine
TTÜ Materjaliteaduse Instituut Füüsikalise keemia õppetool Töö nr. 5 LAHUSTUNUD ELEKTROLÜÜDI ISOTOONILISUSTEGURI KRÜOSKOOPILINE MÄÄRAMINE Üliõpliane: Kood: Töö teostatud Töö ülesanne. Töös mõõdetakse vee ja teadaoleva kontsentratsiooniga elektrolüüdi vesilahuse külmumistemperatuurid. Lahuse külmumistemperatuuri langusest arvutatakse isotoonilisustegur. Nõrga elektrolüüdi puhul arvutatakse ka dissotsiatsiooniaste. Teooria Lahjendatud lahuste üldised füüsikalised omadused Lahjendatu lahus koosneb vedelast lahustist ja temas lahustunud mittelenduvast ainest. Lahjendatud lahuste üldiste omaduste all mõistetakse neid lahjendatud lahuste omadusi, mis sõltuvad lahustist, kuid ei sõltu lahustunud aine omadustest.
TTÜ Materjaliteaduse instituut füüsikalise keemia õppetool Töö nr 3. Töö pealkiri: Molaarmassi krüoskoopiline määramine Üliõpilase nimi ja Õpperühm eesnimi : Töö teostamise Kontrollitud: Arvestatud: kuupäev: Tööülesanne. Aine molaarmassi leidmiseks määratakse lahusti (näit. vee) ja uuritava aine lahuse külmumistemperatuurid. Molaarmass arvutatakse lahuse külmumistemperatuuri languse põhjal. Katseandmete alusel arvutatakse lahustatud aine molaarmass, lähtudes Raoult`i II seadusest (vt. võrrand 5). Tk = K k Cm (10)
TTÜ Materjaliteaduse Instituut Füüsikalise keemia õppetool Töö nr. 5 Lahustunud elektrolüüdi isotoonilisusteguri krüoskoopiline määramine Üliõpilane Kristin Obermann Kood 123482KAKB Töö teostatud 21.02.2014 .................................... märge arvestuse kohta, õppejõu allkiri Lahjendatud lahuste üldised füüsikalised omadused
Materjaliteaduse instituut TTÜ füüsikalise keemia õppetool Töö nr 3F Töö pealkiri: Molaarmassi krüoskoopiline määramine Üliõpilase nimi ja Õpperühm eesnimi: Töö teostamise Kontrollitud: Arvestatud: kuupäev: 22.02.2012 Töö ülesanne: Aine molaarmassi leidsmiseks mõõdetakse lahusti(nt. vee) ja uuritava aine lahuse külmumistemperatuurid. Molaarmass arvutatakse Raoult'i II seadust kasutades lahuse külmumistemperatuuri languse põhjal. Töö käik:
TTÜ Materjaliteaduse instituut Füüsikalise keemia õppetool Töö nr. FK5 Töö pealkiri: Lahustunud elektrolüüdi isotoonilisusteguri krüoskoopiline määramine Üliõpilase nimi ja eesnimi : Õpperühm: Töö teostamise Kontrollitud: Arvestatud: kuupäev: Töö ülesanne Töös tuleb mõõta vee ja teadaoleva kontsentratsiooniga elektrolüüdi vesilahuse külmumistemperatuurid. Lahuse külmusmistemperatuuri langusest arvutan isotoonilisusteguri, kusjuures nõrga elektrolüüdi puhul tuleb arvutada ka dissotsiatsiooniaste, tugeva elektrolüüdi puhul aga osmoositegur. Minu konkreetne tööülesanne oli: Määrata KNO3 isotoonilisustegur, mõõtes tema 8% vesilahuse külmumistemperatuuri. Arvutada lahuse osmoositegur. Katse käik Jahutamiseks kasutatakse laboratoorsetel pooljuhtidel töötavat mikrojahutit
Süsteemi elektrijuhtivus kasvab ajas oluliselt etaanhappe (äädikhappe) moodustumise tõttu. Aparatuur Vesitermostaat; juhtivusmõõtja juhtivusnõuga või anduriga; lihvkorgiga 50-ml kolb, 100-ml kolb, 6-ml pipett; stopper. Töö käik Termostaat reguleeritakse juhendaja poolt antud temperatuurile (lubatud temperatuurikõikumised 0,1 - 0,2°C). Termostaati asetatakse 100-ml kolb destileeritud veega. Lülitatakse sisse arvuti ja käivitatakse programm ,,PicoLog". Avaneb aken ,,PLW Recorder". Klõpsata ,,File" ja rippmenüüst ,,New settings". Avaneb aken ,,Recording", millel klõpsata midagi muutmata OK. Avaneb aken ,,Sampling Rate", milles saab valida mõõteintervalli (valisin 10 sek) ja maksimaalse mõõtmiste arvu (intervalli 10 sekundit korral vastavalt 1000). Seejärel OK. Avaneb aken ,,Converter details". Valida PicoLog 1012/1216 ja OK. Avaneb aken ,,Picolog 1012 measurements". Klikkida ,,add" ja valida kanal 1, siis klikkida ,,options" ja OK
Reaktsiooni kineetikat uuritakse elektrijuhtivuse mõõtmise teel, mis lubab reaktsiooni pidevalt jälgida proove võtmata. Süsteemi elektrijuhtivus kasvab ajas oluliselt etaanhappe (äädikhappe) moodustumise tõttu. Töö käik. Termostaat reguleeritakse juhendaja poolt antud temperatuurile (lubatud temperatuurikõikumised 0,1 - 0,2°C). Termostaati asetatakse 100-ml kolb destileeritud veega. Lülitatakse sisse arvuti ja käivitatakse programm ,,PicoLog". Avaneb aken ,,PLW Recorder". Klõpsata ,,File" ja rippmenüüst ,,New settings". Avaneb aken ,,Recording", millel klõpsata midagi muutmata OK. Avaneb aken ,,Sampling Rate", milles saab valida mõõteintervalli (sobib 5 kuni 10 sekundit) ja maksimaalse mõõtmiste arvu (see peaks olema üsna suur, intervalli 5 sekundit korral näiteks 2000, intervalli 10 sekundit korral vastavalt 1000). Seejärel OK. Avaneb aken ,,Converter details". Valida PicoLog 1012/1216 ja OK. Avaneb aken ,,Picolog
CH3COOH kiiruskonstandi määramine. Reaktsiooni kineetikat uuritakse elektrijuhtivuse mõõtmise teel, mis lubab reaktsiooni pidevalt jälgida proove võtmata. Süsteemi elektrijuhtivus kasvab ajas oluliselt etaanhappe (äädikhappe) moodustumise tõttu. Katse käik. Termostaat reguleeritakse juhendaja poolt antud temperatuurile. Termostaati asetatakse 100-ml kolb destileeritud veega. Lülitatakse sisse arvuti ja käivitatakse programm „PicoLog“. Avaneb aken „PLW Recorder“. Klõpsata „File“ ja rippmenüüst „New settings“. Avaneb aken „Recording“, millel klõpsata midagi muutmata OK. Avaneb aken „Sampling Rate“, milles saab valida mõõteintervalli ja maksimaalse mõõtmiste arvu. Seejärel OK. Avaneb aken „Converter details“. Valida PicoLog 1012/1216 ja OK. Avaneb aken „Picolog 1012 measurements“. Klikkida „add“ ja valida kanal 1, siis klikkida „options“ ja OK (salvestab seadistused)
Naatriumisulfaadi lahuste valmistamiseks võtta neli katseklaasi ja need nummerdada 1-4. Vastavalt altoodud tabelile mõõta katseklaasidesse naatriumsulfaadi 2%-list lahust ja vet erinevates vahekordades, saades nii, neli erineva konsentratsiooniga naatriumsulfaadi lahust. Esimesele naatriumsulfaadi lahusele valada varem väljamõõdetud kogus (6cm3) väävelhappelahust, sulgeda katseklaas korgiga ja segada kiiresti katseklaasi seda kahel korral umber pöörates. Mõõta aeg lahuste kokkuvalamise hetkest kuni hägu tekkimiseni. Hägu ilmumiseks kulunud aeg kanda tabelisse. Samuti toimuda teiste naatriumsulfaadi lahustega. Katseandmete põhjal koostada graafik. Ordinaatteljele märkida reaktsiooni kiirus v mõõdetud aja pöördväärtusena (1/t) ja abstsissteljele naatriumsulfaadi konsentratsioon
Töö käik 2 ml Pb(CH3COO)2 0,5 %-lisele lahusele lisatakse ettevaatlikult tilgakaupa 10 %-list NaOH lahust kuni tekkiv Pb(OH)2 sade kaob ja lahuses moodustub naatriumplumbaat Na2PbO2. Seejärel lisatakse katseklaasi 1 ml munavalgu lahust, loksutatakse ja reaktsioonisegu soojendatakse mõne minuti vältel, kuni algab pruunikasmusta kolloidse sademe moodus- tumine. Seejärel asetatakse katseklaas statiivi, kus sademe formeerumine jätkub. 1.1.5 Valkude sadestamine trikloroäädikhappega Trikloroäädikhape (TKÄ) ehk trikloroetaanhape on laialdaselt levinud valke denatureeriv ja lahusest väljasadestav reagent, kuid TKÄ ei sadesta peptiide, mille molekulmass on alla 10 000. Seetõttu saab trikloroäädikhapet kasutada valkude eraldamiseks madal- molekulaarsetest lämmastikuühenditest, nagu valgu hüdrolüüsi produktid.
enama elemendi omavahel seotud aatomitest (H 2O, H2SO4, CO2, NaCl). Tal on koostiselementidega võrreldes teistsugused füüsikalised ning keemilised omadused. Puhas aine on kindla koostisega aine, koosneb ainult ühe aine osakestest, põhiainet on 99,9999% (lisandeid on 0,0001%). Homogeenses segus on segu keemiline koostis ja struktuur segu mistahes osas ühesugune (nt lahus, õhk). Heterogeenne segu või süsteem koosneb kahest või enamast kas keemilise koostise või struktuuri poolest erinevast homogeensest osast (faasist), segu, mille koostis ja omadused on segu piires erinevad (nt suspensioon, mille osakesed on erinevad). Faas on heterogeense süsteemi üks homogeenne osa. Faasid võivad erineda üksteisest füüsikalise oleku (tahke, vedel, gaas), keemilise koostise või struktuuri poolest, s.t. faaside vahel on piirpinnad. 4. Ainete valemite mõiste, keemilise reaktsiooni võrrand ja nende seletused (sisu). Mis on keemiline
EHITUSTEADUSKOND Eesti eluasemefondi puitkorterelamute ehitustehniline seisukord ning prognoositav eluiga Uuringu lõpparuanne Ehituskonstruktsioonid Ehitusfüüsika Tehnosüsteemid Sisekliima Energiatõhusus Tallinn 2011 EHITUSTEADUSKOND Eesti eluasemefondi puitkorterelamute ehitustehniline seisukord ning prognoositav eluiga Uuringu lõpparuanne Targo Kalamees, Endrik Arumägi, Alar Just, Urve Kallavus, Lauri Mikli, Martin Thalfeldt, Paul Klõšeiko, Tõnis Agasild, Eva Liho, Priit Haug, Kristo Tuurmann, Roode Liias, Karl Õiger, Priit Langeproon, Oliver Orro, Leele Välja, Maris Suits, Georg Kodi, Simo Ilomets, Üllar Alev, Lembit Kurik
Ainevahetuse käigushoidmiseks peab iga rakk pidevalt ainet vastu võtma. Seda protsessi nimetatakse endotsütoosiks. Selle ülesande täitmiseks on raku käsutuses aktiivsed ja passiivsed võimalused, s.t nii energia tarbimisega kui ka ilma selleta. Passiivsed transpordiprotsessid Difusioon – molekulide ja ioonide jaotumine mingis keskkonnas (nt vesi, õhk) piki kontsentratsioonikallakut. Keskkonnas lahustunud ained liiguvad kõrgeima kontsentratsiooni punktist madalaima kontsentratsiooniga punkti poole, kuni kontsentratsioon ühtlustub. Osmoos – vastupidi difusioonile suudavad poolläbipaistvat membraani läbida vaid vedeliku molekulid ja mitte selles lahustunud aineosakesed. Osmoosi toimumise eelduseks on, et membraaniga eraldatud vedelikukogustes on lahuse kontsentratsioonierinevus ja et lahustunud aine ei suuda membraani läbida. Kontsentratsiooni ühtlustamiseks hakkab vedelik
ARSENI PALU EHITUS, EKSPLUATATSIOON SÕIDUTEHNIKA «Valgus» · Tallinn 1976 6L2 P10 Retsenseerinud Uve Soodla Kääne kujundanud Bella G r o d i n s k i Raamatu esimeses osas kirjeldatakse meil enamlevi- nud mootorrataste, motorollerite ja mopeedide ehi- Eessõna tust ning töötamist. Teises osas käsitletakse kõigi nimetatud sõidukite hooldamist ja rikete otsimist- Mootorrattaid (motorollereid ja mopeede) käsutatakse kõrvaldamist Kolmandas osas antakse nõu õige ja peamiselt isiklike sõidukitena. Nad säästavad aega igapäe- ohutu sõidutehnika õppimiseks. vastel tarbekäikudel, võimaldavad huvitavalt veeta nädala- Raamat on mõeldud kõigile, kes tunnevad huvi