Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Laser - sarnased materjalid

laser, aatom, gould, laserid, kristall, elektron, ardo, laur, patendi, footon, lainepikkus, rubiin, gaas, kiirt, kiirte, nivool, kroomi, augu, peegel, infrapuna, laseriga, taotlus, kiiri, alas, elin, koherentne, kasutatava, impulss, ketta, patendiamet, holograafia, metall, disk, ioonid, seadmed, valguskiir, stimuleeritud, rakk, hologramm, footonite
thumbnail
22
odt

Uurimistöö laserid ja nende kasutamine

......................................................................8 4.LASERI TÜÜBID....................................................................................................................9 4.1 Rubiinlaser.......................................................................................................................9 4.2 Gaaslaser.........................................................................................................................9 4.3 Röntgen laser.................................................................................................................10 4.4 Värvilaser......................................................................................................................10 4.5 Elektronlaser..................................................................................................................10 4.6 Tahkislaser ..........................................................................................

Füüsika
126 allalaadimist
thumbnail
10
doc

Referaat Laserist

Laser on üpris eriliste omadustega uut liiki valgusallikas. Tema poolt kiiratud valgus võib olla erakordselt intensiivne, äärmiselt kõrge koherentsuse astmega ning koondunud väga kitsasse lainepikkuste vahemikku, pealegi võib valgus allikast väljuda kitsa paralleelkiirtekimbuna. Laseri väga intensiivne, rangelt koherentne ja kitsa paralleelkiirtekimbuna leviv kiirgus on toonud talle väga palju kasutusalasid. Laser ei ole mitte üksnes energiarikas ja suure intensiivsusega, vaid ühendab lisaks sellele mõningaid valguslainete jooned raadiolainete mõningate omadustega. Laser on abreviatuur. Sõna laser on lühend inglisekeelseist sõnadest "Light Amplification by Stimulated Emission of Radiation" (valguse võimendamine stimuleeritud kiirguse varal). Laser kui optiline kvantgeneraator (kvantelektroonika põhiseade) on valguse stimuleeritud kiirgumisel

Füüsika
41 allalaadimist
thumbnail
5
doc

Laserite tööpõhimõte ja ehitus

Laser Sõna laser on lühend inglisekeelseist sõnadest "Light Amplification by Stimulated Emission of Radiation" (valguse võimendamine stimuleeritud kiirguse varal). Laser kui optiline kvantgeneraator (kvantelektroonika põhiseade) on valguse stimuleeritud kiirgumisel rajanev koherentvalguse generaator, harvemini valguse võimendi. Valguse all mõistetakse sel juhul lühilainelist elektromagnetkiirgust, mille lainepikkus on suurem , kui 1mm. Laserite töö baseerub pööratud jaotuse ja optilise pumpamise nime kandvatel kvantoptilistel protsessidel. Laser on üpris eriliste omadustega uut liiki valgusallikas. Tema poolt kiiratud valgus võib olla

Füüsika
45 allalaadimist
thumbnail
13
pdf

Laserite ajalugu

GUSTAV ADOLFI GÜMNAASIUM Randolf Otsepp LASERID Referaat Juhendaja: Jana Paju Tallinn 2010 Sisukord SISSEJUHATUS ..........................................................................................3 LASERITE AJALUGU.............................................................................. ........4 Definitsioon.................................................................................... ......4 Lühidalt laserite ajaloost........................

Füüsika
23 allalaadimist
thumbnail
13
docx

Laserid

Ülekantud tähenduses mõistetakse valguse all ka teadmisi või tarkust. [1] Tänapäeval puutume laseritega kokku üpris tihti. Lasereid leidub nii meie arvutite CD-lugejates, kui ka CD-kirjutajates. Samuti kasutatakse lasertehnoloogiat nii meditsiinis, ehituses, tööstuses ja paljus muus, millest meil ei pruugi õrna aimdustki olla. Käesolevas uurimistöös võtangi vaatluse alla just erinevad laseritüübid, laserite ajaloo ja kasutusvaldkonnad. 2 LASERIST ÜLDISELT Laser ehk valguskvantgeneraator ehk optiline kvantgeneraator on indutseeritud kiirguse omadustel põhinev seade, mis tekitab monokromaatilist elektromagnetkiirgust spektri optilises, kas siis ultravioletses, nähtavas või infrapunases osas. Sõna "laser" tuleb ingliskeelsest fraasist light amplification by stimulated emission of radiation, mis sõna-sõnalt tõlkides tähendab valguse võimendamist stimuleeritud kiirguse kaudu [2].

Füüsika
15 allalaadimist
thumbnail
3
doc

Laser

aastal ameeriklase Maimani poolt. Laser on üpris eriliste omadustega valgusallikas. Tema poolt kiiratud valgus võib olla erakordselt intensiivne, äärmiselt kõrge koherentsuse astmega ning koondunud väga kitsasse lainepikkuste vahemikku, pealegi võib valgus allikast väljuda kitsa paralleelkiirtekimbuna. Laseri väga intensiivne, rangelt koherentne ja kitsa paralleelkiirtekimbuna leviv kiirgus on toonud talle väga palju kasutusalasid. Laser ei ole mitte üksnes energiarikas ja suure intensiivsusega, vaid ühendab lisaks sellele mõningaid valguslainete jooned raadiolainete mõningate omadustega. Laser on tegelikult lühend sõnade algtähtedestr. Sõna laser on lühend inglisekeelseist sõnadest "Light Amplification by Stimulated Emission of Radiation" (valguse võimendamine stimuleeritud kiirguse varal). Laser kui optiline kvantgeneraator (kvantelektroonika

Füüsika
53 allalaadimist
thumbnail
5
doc

Laserid

Sisukord 1. Laserkiirte rakenduste jaotumine kaheks..........................................................................2 2. Laser radarina....................................................................................................................3 3. Laser mõõtmiseks..............................................................................................................4 4.Laser meditsiinis.................................................................................................................5 4.1. Laseri kasutamine silmade ravis....................................................................5 4.2. Laser kortsude eemaldajana.........................................................................

Füüsika
24 allalaadimist
thumbnail
4
doc

Laserid

Laseri põhimõtte avastas aga Charles Townes USA-s 1954. aastal, ning asus seda viimistlema koos Schawlow´ga. USA Theodore Maiman ehitas esimese töötava laseri, 16. mail 1960. aastal milleks oli sünteetilisest rubiinist silinder. Rubiin andis tavalist valgust välklambist ja kiirgas laserivalgust. Laseri leiutamisel ei saa aga ühte kindlat nime nimetada, oma osa on selles 20. sajandi suursaavutuses nii Townes'il, Schawlow'l, Gouldil, Maimanil, Prohhorovil kui ka Bassovil. Aatom kiirgab valguse footoni siis, kui elektron langeb aatomis kõrgema energiaga tasemelt ehk ergutatud olekust madalama energiaga tasemele. Enamikel juhtudel kiirgavad ergutatud elektronid valgusfootoneid iseeneslikult. Seda kutsutakse spontaanseks emissiooniks. Vähestel erijuhtudel aga takistavad ergutatud olekute omadused elektronidel valgust kiirata ilma, et footonid poleks valla päästetud teise valgusfootoni poolt. Sellist protsessi nimetatakse stimuleeritud emissiooniks

Füüsika
24 allalaadimist
thumbnail
6
doc

Rubiinlaser

(0,05 kaaluprotsenti). Lainepikkused: 694,3 nm & 692,9 nm A21 = 333 s-1, 2 = 3 ms, 21 = 2,5E-20 cm2 = 3,3E11 s-1 Nõrga signaali võimendus 0,2 cm-1 Optiline pumpamine: neeldumisribad 404 & 554 nm, = 50 nm (4A24F2, 4F1) Rubiinlaser, selle töö ja ehitus Pööratud jaotuse põhimõte realiseeriti esmakordselt rubiinlaseris (praegu kõige levinumad laserid), sünteetilisest rubiinist kristallvardas, millele on valmistamise ajal lisatud tühine hulk kroomi. Rubiin on alumiiniumoksiidi kristall teatud lisandiga, mis tingib tema suurepärase värvuse. Safiir on sama kristall, ainult teise lisandiga. Neid kristalle osatakse nüüd tehislikult valmistada pikkade varraste kujul, mille kristallivõre on väga hea kvaliteediga. Puhas, lisanditeta alumiiniumoksiidi kristall on värvitu ja läbipaistev. Kui kasvatamise ajal lisada talle veidi titaani, omandab kristall helesinise tooni ning tulemuseks on kalliskivi ­ safiir. Kroomi lisamisel muutub kristall leekivpunaseks ning

Füüsika
19 allalaadimist
thumbnail
9
doc

Laserid

1960. aasta mais õnnestus Ameerika teadlasel Theodore Maimanil luua esimene laserkiir, erepunase valguse impulss. Tema laseriks oli rubiinlaser ( joon.1). joon. 1 Esimene laser tekitas valgust sünteetilisest rubiinist. Rubiin annab tavalist valgust välklambist ja kiirgab laserivalgust. Sellega oli pandud alus uuele teadusharule, millele leitakse tänapäeval juba sadu ning isegi tuhandeid kasutusi teaduses, tehnikas ja meelelahutuses. Sõna ,,laser" on tulnud ingliskeelsest sõnadest light amplification by stimulated emission of radiation mis tähendab ,,valguse võimendus kiirguse stimuleeritud eritumise kaudu". Laser on seade, mis

Füüsika
145 allalaadimist
thumbnail
5
doc

Laserid

võimaldab kiirata kitsaid, koherentseid ja monokromaatilisi valguskimpe. Laseri abil saadakse stimuleeritud kiirgus. Laseri tööpõhimõte seisneb pöördhõive tekitamises optilisse resonaatorisse Lasereid jagatakse tööreziimi, ergasti ja kiirguri järgi. alalislaserid välklaserid (impulsslaser) neodüümlaser tahkislaser rubiinlaser kristall-laser gaaslaser argoon-laser heelium-neoon laser krüptoonlaser süsinikdioksiidlaser eksimeerlaser vedeliklaserid värvlaser pooljuhtlaser (dioodlaser) kemolaserid Tänapäeval kasutatakse sadu erinevaid lasereid. Laserivalgus suudab edastada telefonikõnesid, mängida CD-delt maha muusikat ning lugeda infot arvutite CD- ROM-idelt. Lasereid kasutatakse ka kirurgias. Laserskalpelli abi on võimalik opereerida äärmiselt täpselt ja minimaalse verejooksuga. Laserkiire abil saab ka valutult hambaid puurida

Füüsika
31 allalaadimist
thumbnail
7
doc

Väikeste osakeste läbimõõdu määramine gaaslaseri abil

TÜRI KOLLEDZ Väikeste osakeste määramine gaaslaseriga Referaat Hannelore 12/14/2010 1 Sisukord Sisukord.................................................................................................................................. 2 Mis on laser?........................................................................................................................... 3 HeNe laseri ehitus ja tööpõhimõte........................................................................................... 4 Väikeste osakeste läbimõõdu määramine gaaslaseri abil....................................................... 5 Teooria....................................................................................................................

Füüsika loodus- ja...
12 allalaadimist
thumbnail
3
docx

Füüsika kodune kontrolltöö "Laserid"

ergastamine toimub pidevalt, siis peagi on ergastatud olekus elektrone rohkem kui neid on põhiolekus. Sellist olukorda nimetatakse pöördhõiveks, sest tavaliselt on elektrone põhiolekus rohkem kui ergastatud olekuis. Kui nüüd tuleb kusagilt valguskvant, mille energia vastab metastabiilse oleku ja põhioleku energiate vahele, siis tekib stimuleeritud kiirgus ja metastabiilses olekus elektronid lähevad korraga põhiolekusse. Sellega kaasneb ka tugev kiirgus. 11. Mis on laserid? - Laser ehk valguskvantgeneraator ehk optiline kvantgeneraator on indutseeritud kiirguse omadustel põhinev seade, mis tekitab monokromaatilist elektromagnetkiirgust spektri optilises, kas siis ultravioletses, nähtavas või infrapunases osas. 12. Kuidas saavutatakse laserites pöördhõive? Joonis. - Laserkiirgus saab tekkida, kui aine aatomitel on elektronide jaoks sobivad energeetilised olekud: põhiolek, ergastatud olek ja metastabiilne olek. Ergastamisel

Füüsika
11 allalaadimist
thumbnail
54
ppt

Laserite kasutamine silmakirurgias

Laserite kasutamine silmakirurgias Millest hakkan rääkima ? Ajalugu Laserid Laseri kiirguse bioloogiline toime Nägemishäired Kuidas saab neid ravida laserite abil LASIK (EpiLasik, Lasek, ...) FRK Mis mõtleb sellest FDA ? Ajalugu LASER (= valgus kvantgeneraator = optiline kvantgeneraator) indutseeritud kiirguse omadustel põhinev seade, mis tekitab monokromaatilist elektromagnetkiirgust spektri optilises, kas siis UV, nähtavas või IR osas. "Laser" tuleb ingliskeelsest fraasist light amplification by stimulated emission of radiation, mis sõnasõnalt tõlkides tähendab valguse võimendamist stimuleeritud kiirguse kaudu. 1916 ­ Albert Enstein pakub välja mõiste stimuleeritud emission.

Meditsiin
6 allalaadimist
thumbnail
2
docx

Laseri lühiülevaade

koherentsete footonite laviin. Piki kristalli leviv valguslaviin peegeldub kummagi peeglini jõudes kristallidesse tagasi. Iga peegeldus justkui lisaks uue võimendkristalli. Esimese laseri leiutas 1960. aastal USA füüsik Theodore Maiman. Lasereid jagatakse tööreziimi, ergasti ja kiirguri järgi alalislaserid välklaserid (impulsslaser) * neodüümlaser tahkislaser * rubiinlaser * kristall-laser gaaslaser * argoon-laser * heelium-neoon laser * krüptoonlaser süsinikdioksiidlaser eksimeerlaser vedeliklaserid * värvlaser pooljuhtlaser (dioodlaser) kemolaserid Laserkiire omadused 1. Monokromaatilisus 2. Koherentsus 3. Vähene hajuvus 4. Suur võimsus Laseri kasutusvaldkonnad 1. Tööstuses - materjalide täpseks lõikamiseks, laserkeevituseks 2. Elektroonikas - CD-seadmetes, laserprinterites, laserhiirtes, laserskännerites 3. Meditsiinis - hambaravi, silmalõikused, laserkirurgija

Füüsika
28 allalaadimist
thumbnail
9
doc

Referaat laseritest

Kadrioru Saksa Gümnaasium Laserid (referaat) Sigrit Link 12B/R Tallinn 2010 2 Sisukord Mis on laser?............................................................................................................................... 4 Laseri tüübid............................................................................................................................... 4 Laserkiire omadused................................................................................................................... 4 Laseri kasutusvaldkonnad................................................................

Füüsika
31 allalaadimist
thumbnail
1
docx

Laseri leiutamine

Meie arvutite CD lugejates ja ka CD kirjutajates, mis peaks enamustes arvutites ka olemas olema, kasutatakse lasertehnoloogiat. Samuti on too sama tehnoloogai kasutusel muudes meile tutavates ja igapäevastes asjades nagu näiteks: muusikakeskused, CD mängijad, laserprinterid ja skännerid. Iseasi on ainult see kas inimene ise ka on teadlik sellest, et nendes igapäevastes vahendites on lasertehnoloogai kasutusel. Käesolevas uurimistöös on lähema vaatluse all laserid, koos nende kasutamise, tööpõhimõtte, ajaloo ja erinevate liikidega. Uurimistöö eesmärgiks on leida informatsiooni laserite ajaloo kohta, (kes selle leiutas ja millal?)mis põhimõttel töötab laser ning millistes valdkondades ja kuidas on võimalik seda kasutada. Uurimistöö hüpoteesiks on, et lasertehnoloogia on küllaltki uus asi ja et ei ole olemas eriti palju laseri liike. Uurimistöös on kasutatud allikmaterjalidena Tolansky S raamatut Revolutsioon optikas,

Füüsika
6 allalaadimist
thumbnail
2
docx

Laser

Pumpamise viisiks võib olla optiline pumpamine, elektronergastus ja keemilised reaktsioonid, aga leidub muidki võimalusi. Tööreziimi järgi eristatakse pidevreziimis töötavat ja impulsslaserit. Töötava aine põhjal eristatakse gaas-, vedelik-, pooljuht- ja dielektriklasereid. [1] Selles artiklis käsitletakse põhiliselt liigitust töötava aine põhjal. Tuleb arvestada, et isegi nõrga võimsusega laserid (mõni millivatt) võivad silmale ohtlikud olla. Laserikiirgus on väikese hajumisega ja kui see on sellise lainepikkusega, mida silm suudab fokuseerida, siis võib silm kiirguse energia koondada väga väiksesse punkti. See tähendab, et isegi nõrk laser võib lühikese ajaga põhjustada silmale püsivat kahju.

Füüsika
9 allalaadimist
thumbnail
4
doc

Kordamisküsimused TAHKISTE STRUKTUUR

JUHTIVUSTSOON ­ valentstsoonile järgnev elektronidega täitmata või osaliselt täidetud lubatud tsoon 7. Milliseid kahte juhtivustüüpi eristatakse pooljuhtides? Lk 61 Eristatakse elektronjuhtivus (n-tüüpi) ja aukjuhtivus (p-juhtivus). 8. Selgita augu mõistet pooljuhtide (üldiselt tahkiste) füüsikas ja kirjelda aukjuhtivuse protsessi. Lk 61 Auk ­ on vaba tase, mis tekib siis kui pooljuhis on siirdatud osa elektrone valentstsoonist juhtivustsooni. Aukjuhtivus ­ ioniseeritud aatom haarab kaotatud elektroni asemel naabri oma, see omakorda röövib järgmist ja nõuab muudkui aatomite ahelikku pidi tagasi 9. Mis on rekombinatsioon? Lk 68 Rekombinatsioon ­ elektroni ja augu taasühinemine 10. Mis on termistor? Lk 62 Termistor on takisti, mille takistus muutub temperatuuriga. 11. Millel põhineb fototakistite toime? Lk 62 Fototakistite toime põhineb fotojuhitavusel 12. Selgita doonorite ja aktseptorite nimetuste päritolu. Lk 63

Füüsika
26 allalaadimist
thumbnail
22
pptx

Laserid

Second level Theodore Maiman Third level Fourth level (s. 1927) ehitas Fifth level esimese töötava laseri, milleks oli sünteetilisest rubiinist silinder. Rubiinist laser Lihtne rubiinlaseri ehitus Laserite ajalugu LASER on lühendsõna: Light Amplification by Stimulated Emission of Radiation (valguse võimendamine stimuleeritud kiirguse abil) Roy Glauber, 80, John Hall, 71, Theodor Hänsch, 63, USA Harvardi Ülik. USA Colorado Saksamaa, Müncheni professor Ülik. professor Ülik. professor 2005. A. Nobeli füüsikalaureaadid

Füüsika
68 allalaadimist
thumbnail
5
doc

Laserite kasutamine

Referaat Laserite kasutamine 2010 Laseritest Juba 1917 tõestas Albert Einstein teoreetilist stimuleeritud kiirguse olemasolu, esimene töötav laser loodi aga alles 1960. aastal. Selle aasta 16. märtsil demonstreeris Theodore Maiman esimest funktsioneerivat laserit Hughes'i uurimislaboris. Sõna "laser" moodustavad tähed tulenevad ingliskeelsete sõnade algustähtedest (light amplification stimulated by emission of radiation), mis tähendab "valguse võimendus kiirguse stimuleeritud emissiooni kaudu". Aatom kiirgab valguse footoni siis, kui elektron langeb aatomis kõrgema energiaga tasemelt ehk ergutatud olekust

Füüsika
28 allalaadimist
thumbnail
6
docx

Pooljuhtlaserid ja ultraviolettvalguse laserid

Aleksei Agesin IS14 VIKK 1.06.2015 iPooljuhtlaserid ja laserid referaat Pooljuhtlaserid Laserdiood ehk pooljuhtlaser on optoelektrooniline kiirgusallikas, milles tekib optiline kiirgus nagu valgusdioodiskielektronide ja aukude rekombineerumisel, s.t vastasmärgiliste laengukandjate ühinemisel. Ent laserdioodis ei toimu see spontaanselt, vaid stimuleeritult; seega toimub valguse võimendus kiirguse stimuleeritud ehk indutseeritud emissiooni tulemusena. Sel juhul tekkiv kiirgus on monokroomne (ühevärviline) ja koherentne,

Füüsika
3 allalaadimist
thumbnail
8
docx

LASERI TÖÖPÕHIMÕTE, LASERKIIRGUSE OMADUSED JA VÄIKESTE OSAKESTE MÕÕDETE MÄÄRAMINE

Juhendaja: Tiiu Müürsepp Türi 2010 1. Sissejuhatus Referaadi teemaks on laseri tööpõhimõte, laserkiire omadused ja väikeste osakeste mõõtmete määramine. Valisin selle teema kuna see tundus huvitav ja ma tahtsin laserist rohkem teada saada. Töös esitatakse keskkonnafüüsika praktikumis sooritatud väikeste osakeste mõõtmete määramise katse tulemused ja nende põhjal tehtud järeldused. 2. Mis on laser? Laser on tehis valgusallikas, mis eristub teistest valgusallikatest, tavavalgustitest( elektripirn, luminestsentlamp, neoontoru jt) selle poolest, et kiirgab kitsaid (suunatud) valguskimpe, mis on koherentsed, monokromaatsed ja võivad olla ülieredad. Laserikiirt saab ülimalt koondada ruumis (ülipeeneks ­ m suurusjärgus valgustäpiks) ja ajas (piko- koguni femtosekundi­ 10 -12 ­ 10-15 s ­ suurusjärgus välkeks e impulsiks). 3. Laseri ehitus Joonis 1. 1) Aktiivaine

Füüsika loodus- ja...
43 allalaadimist
thumbnail
4
odt

ODD ja FDD

kirjutada andmeid optilistele plaatidele. Andmekandjateks on CD (Compact Disc), DVD(Digital Versatile Disc) ja Blu-ray plaat. Tänapäeval enam ei toodeta CD-ROM, CD kirjutamis ja nende kombinatsioonseid lugejaid. Kõige tavalisemad on CD/DVD lugejad ja kirjutajad, mida leiab pea iga sülearvuti või personaal arvuti küljest. Optilise meediumi eelkäijaks olid Diskettid, mis salvestasid andmeid kasutades magnetismi. Iga ODD tähtsaimaks osaks on pooljuht laser, lääts ja fotodioodid, mis on mõeldud peegeldunud valguse tuvastamiseks. Algselt töötasid CD laserid lainepikkusel 780nm, mis on elektromagnetlainete infrapuna osas. DVD-de puhul vähendati lainepikkus 650nm peale ning Blu- Ray kasutab 405nm lainepikkust. ROM optiline meedia (Read only media) puhul ei saa kasutaja sinna midagi kirjutada, sinna on andmed juba eelnevalt kirjutatud. Andmete kirjutamine aga ei toimunud nende puhul laseriga.

Informaatika
1 allalaadimist
thumbnail
11
doc

Referaat Laserid meditsiinis

........................................................lk 3 1. Laserite kasutus nahal...............................................................lk 4 1.1 Sünnimärkide eemaldamine.................................................lk 4 1.2 Tätoveeringute eemaldamine.................................................lk 4 1.3 Nahahaiguste laserravi........................................................lk 4 1.4 Venitusarmide ehk striiade eemaldamine 2. Laser silmaravi........................................................................lk 5 2.1 Laserskalpell....................................................................lk 5 3. Hambaravilaserid.....................................................................lk 6 3.1 Kõvakoe protseduurid........................................................lk 6 3.2 Pehmekoe protseduurid......................................................lk 6 3

Füüsika
15 allalaadimist
thumbnail
10
docx

Footonid

1)Metalli pinnalt väljunud elektronide arv sõltus valguse intensiivsusest. 2)Väljunud elektronide kiirus ei sõltunud valguse intensiivsusest, vaid valguse sagedusest ( värvusest) 3)Fotoefekti ei tekkinud kui sagedus oli väiksem teatud piirisagedusest, mis sõltus ainest. Aastal 1905 avaldas Albert Einstein fotoefekti teooria. Oma teoorias näitas ta, et valgus kiirgub kvantidena ja säilitab oma kvanditud oleku ka edasisel levimisel ja neeldub samuti kvantide kapua. Väitis, et elektron saab aine pinnalt lahkuda siis, kui tehakse mingi väljumistöö ja antakse elektronidele mingi kiirus. Kui kvandi energiast selleks ei piisa siis fotoefekti ei teki. h * f = A + (mv2) / 2 (J) h * f = kvandienergia A = väljumistöö (mv2) / 2 = elektroni kineetiline energia Piirjuhul kui elektronide kiirus ei anta (v = 0), siis n * f = A = fm= A / n ( punapiiri sagedus)

Optika
8 allalaadimist
thumbnail
16
doc

Optilised seadmed arvutis ja andmekandjad

Sellele plaadile saab andmeid uuesti peale kirjutada. Joonis 7. CD plaadi ehitus 1.2.3 CD kirjutaja CD kirjutajal on samasugune liikuv laserpea komplekt kui CD plaadi lugejalgi. Kuid standardsele lugemislaserile on lisandunud kirjutamislaser. Kirjutamislaser on võimsam kui lugemislaser, mistõttu mõjub see CD plaadile teisiti. Andmete salvestamiseks kirjutaja lülitab kirjutamislaserit sisse ja välja sünkroonis 1 ja 0. Laser tumendab materjali et kodeerida 0 ja jätab selle läbipaistvaks et kodeerida 1. CD plaati on võimalik kirjutada suurema kiirusega kui maha lugeda. Selleks on muudetud kirjutuslaseri süsteem kiiremini toimivaks, samas tagatakse ka parem ühendus arvuti ja kirjutaja vahel. CD-RW kirjutamine erineb selle poolest, et muutes laseri võimsust kirjutamise ajal, siis materjal mingi temperatuurini kuumutamisel

Kompuuterfüüsika
2 allalaadimist
thumbnail
2
docx

Aatomifüüsika, legeerimine, pooljuht, kiip

1. Kirjelda joonsidet ja kovalentset sidet ? Kovalentne side on ühiste elektronpaaride vahendusel aatomite vahele moodustuv keemiline side. Kovalentse sideme juures on kandev roll elektronkatte väliskihi elektronide vastastikune toime. Omavahelise tõmbumise tõttu võivad positiivselt ja negatiivselt laetud ioonide vahel moodustuda väga tugevad sidemed. Neid sidemeid nimetatakse ioonsidemeteks, sest need moodustuvad ioonide vahel. 2. Mis on kristall? Kristall on keemilise elemendi, ühendi või isomorfse segu korrapäraselt paigutunud aatomeist koosnev tahke homogeenne ja regulaarselt korduva ühikrakuga struktuur. 3. Mis on võredefekt? Valentselektronide puudujääk seevastu tekitab võres laengudefekti - nn. "augu". 4. Mis on legeerimine? Legeerimine on metalliliste, harvemini mitte metalliliste lisandite manustamine metallile või sulamile mehaanilise vastupidavuse (tugevuse, kõvaduse)

Füüsika
42 allalaadimist
thumbnail
9
pdf

Valguse neeldumine praktikum

626·10-34 J·s) - valguse sagedus [1 Hz] Lainepikkuse ning sageduse vahel esineb aga seos: mida suurem on lainepikkus, seda väiksem on sagedus: c (2) kus ­ valguse lainepikkus [1 m] c ­ valguse kiirus (c = 3·108 m/s) - valguse sagedus [1 Hz] 1 Footon ­ valgusosake ehk energiaportsjon, millel on olemas oma mass ning energia, mis sõltub sagedusest. Footonil puudub seisumass, liigub alati valguse kiirusega. 2 Tallinna Tehnikaülikool Riski- ja ohutusõpetus Seega suuremate lainepikkustega valgustel on väiksem sagedus, ning seetõttu on neis ka energia väiksem

Riski- ja ohutusõpetus
22 allalaadimist
thumbnail
12
pdf

Valguse neeldumine - infrapuna labor

kus E ­ footoni energia [1 J] h ­ Plancki konstant (h = 6.6261034 Js) valguse sagedus [1 Hz] Lainepikkuse ning sageduse vahel esineb aga seos: mida suurem on lainepikkus, seda väiksem on sagedus: (2) 1 Footon ­ valgusosake ehk energiaportsjon, millel on olemas oma mass ning energia, mis sõltub sagedusest. Footonil puudub seisumass, liigub alati valguse kiirusega. 2 Tallinna Tehnikaülikool _ Riski ja ohutusõpetus kus ­ valguse lainepikkus [1 m]

Riski- ja Ohutusõpetus
14 allalaadimist
thumbnail
4
docx

Hoonete 3D laserskaneerimise kordamisküsimused

1. What do the acronyms TLS, MTLS, ALS, LIDAR, LASER, TOF, PS refer to? TLS (TerrestriaTLS (Terrestrial Laser Scanning) - viitab otseselt maapealsele, peamiselt staatilisele, laserskaneerimisele. Kasutatakse ka nimisõnana. Mobiilne terrestriline laserskaneerimine (MTLS) Mobiilset ehk dünaamilist laserskaneerimist kasutatakse peamiselt sõiduki peal oleva seadme abil teede ja tänavate mõõdistamiseks. ALS - aerolaserskaneerimine (Airborne Laser Scanning) –viitab otseselt lennuki või helikopteri pealt laserskaneerimisele. LIDAR (LIght Detection and Ranging) – viitab kaugseire tehnoloogiale. Laialdaselt kasutatakse lennuki või helikopteri pealt skaneerimise kohta, kuigi nimetus ei ole viidatud laseri kasutamisele ega muule tehnoloogiale LASER - (Light Amplification by Stimulated Emission of Radiation ek. valguse võimendumine stimuleeritud kiirguse kaudu) on seade, mis võimaldab kiirata kitsaid,

Hoonete 3D laserskaneerimine
16 allalaadimist
thumbnail
8
docx

Riski ja ohutusõpetus valguse neeldumine

h ­ Plancki konstant (h = 6.626·10-34 J·s) - valguse sagedus [1 Hz] Lainepikkuse ning sageduse vahel esineb aga seos: mida suurem on lainepikkus, seda väiksem on sagedus: c = (2) kus ­ valguse lainepikkus [1 m] c ­ valguse kiirus (c = 3·108 m/s) 1 Footon ­ valgusosake ehk energiaportsjon, millel on olemas oma mass ning energia, mis sõltub sagedusest. Footonil puudub seisumass, liigub alati valguse kiirusega. Tallinna Tehnikaülikool Riski- ja ohutusõpetus - valguse sagedus [1 Hz] Seega suuremate lainepikkustega valgustel on väiksem sagedus, ning seetõttu on neis ka energia väiksem. Seega teades valguse lainepikkust saab tema energia avaldada läbi valemi:

Riski- ja ohuõpetus
72 allalaadimist
thumbnail
22
doc

Spektroskoopia

vastupidiselt välja suunale. Tuum neelab energiat. See on NMR fenomen. Tuuma asukoht molekulis (keemiline "ümbrus") môjutab resonantssagedust teatud määral ja 2 see on aluseks NMR spektrite môôtmisele. NMR on ülitähtis orgaanilise keemia meetod. Populaarsed tuumad: 1H, 13C, 31P, 19F, sagedused 60-200MHz Elektron spinn resonants: analoogne nähtus, elektronkatte resonants magnetväljas. Ergastatakse mikrolainega 10000MHz 5.2 Spektroskoopia aparatuur Tüüpilise spektraal instrumendi skeem Valgusallikad: valgusallikas peab olema intensiivne ja stabiilne (päike 10-16 W/(m sr Hz), impulsslaser 1014 W/(m sr Hz) ). vesiniku vôi deuteeriumi gaaslahendus lamp

Keemia
3 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun