...
Eero Ringmäe 3811210**** LAP32 010636 10. dets 2002 Kodutöö aines tõenäosusteooria ja matemaatiline statistika 4 n 14 7 i 1 .. n 10 X: Y: xi 13 25 31 38 46 floor 0.3. 56 58 63 70 74 81 84 89 93 yi 3.6 3.8 0.1. 4.9 5.5 6.2 6.3 7.8 0.1. 7.3 7.4 8.2 8.6 8.5 9 9.8 Näitan punktide (x_i,y_j) asetust xy-tasandil: Juhuslike punktide jaotus 10 8 y i 6 4 2 0 20 40 60 80 100...
39 0 17559.74 18 2 45-54 14138.94 391.0772 389.3519 12355.13 39 2 45-54 15984.97 10809.5 0 4956.993 57 2 45-54 11514.2 0 3897.66 3221.711 73 2 45-54 20280.35 572.1838 0 20077.37 77 2 45-54 857.7497 326.17 0 6116.338 84 2 45-54 15278.4 0 490.7205 9179.957 88 2 45-54 8189.979 462.347 2322.699 7176.859 92 2 45-54 12823.93 11974.15 0 9915.389 106 2 45-54 7414.769 646.8166 0 6266.34 107 2 45-54 24619.25 2276.556 809.0897 2028...
∫ φ2 ( y ) f 2 ( y ) dy= ∫ ∫ x f 1 ( x| y ) dx f 2 ( y ) dy=∫ ∫ x f ( y ) f 2 ( y ) dxdy =∫ x dx ∫ ¿ −∞ −∞ −∞ −∞ −∞ 2 −∞ −∞ . ∞ Analoogiliselt ∫ φ1 ( x ) f 1 ( x ) dx=E(Y ) −∞ 31. Tõenäosusteooria ja matemaatiline statistika kui teineteise pöördteadused. Demonstreerida seda ühe näite abil matemaatiline statistika Jaotused Andmed tõenäosusteooria …. II osa Matemaatiline statistika 1. Klassikalise statistika eeldused. Nende eelduste rikutus Klassikalise statistika eeldused: a. Üldkogum on lõpmatu ja valim on selle lõplik alamhulk; |u| = n –...
Leiame ∫ (y) ( ) = ∫ ∫ ( | ) ( ) = ( , ) ∫ ∫ ( ) = ∫ ∫ ( , ) =∫ ( ) = ( ). ( ) Analoogiliselt ∫ (x) ( ) = ( ) 32. Tõenäosusteooria ja matemaatiline statistika kui teineteise pöördteadused. Demonstreerida seda ühe näite abil matemaatiline statistika Jaotused Andmed tõenäosusteooria …. II osa Matemaatiline statistika 1. Klassikalise statistika eeldused. Nende eelduste rikutus Klassikalise statistika eeldused: a...
Juhuslikud suurused X ja Y on antud juhul tunnused, mis koosnevad 40 objektist. Tunnused X ja Y olgu alljärgnevad: μ,σ X ~ μ lahendaja vanusega aastates ja standardhälve σ = N ¿ ) , kus keskväärtus 2∗lahendaja kinganumber 10 ning Y = aX+U, kus konstant a võrdub lahendaja kinga 0, σ numbriga ning U N ¿ ), kus σ =2∗(lahendaja vanus aastates ) . Ülesanne 1) Leidke lineaarne korrelatsioonikordaja corr(X,Y). 2) Leidke juhuslike suuruste X+Y keskväärtusele 0.95 usaldusintervall. Mis on selle intervalli suurim ja vähim väärtus? Lahendus Ülesanne on lahendatud MS Exceli abil. Lahendaja andmed: X ~ N (21;8.4) Y = 42X + U U ~ N (0, 42) X ja U väärtust...
Mis on sündmus tavaelus? 2. Mis on juhuslik sündmus? 3. Millisest aspektist me tahame sündmusi uurida? 4. Sündmuse matemaatiline definitsioon (elementaarsündmus, elementaarsündmuste ruum, sündmus). Elementaarsündmus on mingi vaadeldava protsessi või läbiviidava katse tulemus. Elementaarsündmuste ruumi moodustavad kõik elementaarsündmused ehk kõikvõimalike tulemuste hulk. Sündmuseks nimetatakse mingit suvalist elementaarsündmuste ruumi alamhulka. 5. Sündmuse toimumise kriteerium. Sündmuse toimumise juures on meile oluline vaid see, kas toimub või mitte. Sündmus toimub, kui toimub sündmust määravatest elementaarsündmustest üks. 6. Mitu erinevat sündmust saab moodustada n-elemendilise elementaarsündmuste ruumi põhjal? Tõesta! N-elemendilise elementaarsündmuste ruumi põhjal saab moodustada 2 n sündmust, mille hulka on arvestatud ka tühihulk. 7. Sündmuste liigitus (kindel, võimatu, vastandsün...
. , ? , : ) ; ) . : ) . : m P( A) = n 12+5+6=23 . : 23! 23 22 21 n = C 23 3 = = = 1771 3!20! 1 2 3 : 6! 6 5 4 m = C 63 = = = 20 3!3! 1 2 3 m 20 P ( A) = = 0,011 n 1771 : , , 0,011. ) , 1 23. = 6/23. : n ( m ) = C nm p m q n-m q = 1-6/23=7/23 n=3 m=3 3 0 6 7 216 P( B) = 3 ( 3) = C p q = 1 3 3 3 0 = 0,018 2...
Jrk HARIDUS SUGU ASULA TULU KULU PALK 1 4 1 2 240,40 817,51 1 000,00 2 2 1 1 708,29 674,66 2 000,00 3 4 1 1 725,00 754,21 3 500,00 4 5 1 1 800,00 641,75 1 600,00 5 3 1 2 880,82 1 351,81 2 000,00 6 5 2 2 908,63 709,14 1 700,00 7 3 2 1 1 035,67 818,93 2 115,00 8 4 2 2 1 050,84 917,61 1 428,00 9 5 1 1 1 119,87 1 429,05 4 500,00 10 5 2 1 1 370,20 1 011,09 2 780,00 11 5 1 1 1 383,33 925,63 1 800,00 12 6 2 2 1 414,59 914,67 2 700,00 13 5...
Matrikli viimane number – 3. Järelikult SUGU=2 ja AGE_GR=25-34 Koo Sug Vanus- V03C V27C V30C V34C V36C V37C V38C V41C V42C d_i u grupp 310 2 2534 9457,866 5669,58 0 4378,57 909,577 510,334 0 777,44 0 94 392 28 17 93 311 2 2534 10553,17 0 214,4133 10131,6 0 744,472 0 1962,6 2979,255 211 3 256 91 87 312 2 2534 7392,166 0 1738,630 5798,31 1483,31 2828,02 22246,05 3896,4 8468,680 55 66 72 376 537 789 55 313 2 2534 7348,636 2502,98 672,9768 8115,65 1266,28 1397,80 3459,408 8541,66...
❚õ❡♥ä♦s✉st❡♦♦r✐❛ ❥❛ st❛t✐st✐❦❛ ■ ❡❦s❛♠✐❦s ❦♦r❞❛♠✐♥❡ ✾✳ ❥✉✉❧✐ ✷✵✶✺✳ ❛✳ ✶✳ ♥ä❞❛❧ ❉❡✜♥✐ts✐♦♦♥✐❞ ✶✳ ❏✉❤✉s❧✐❦ ❦❛ts❡ ✲ t❡❣❡✈✉s✱ ♠✐❧❧❡ t✉❧❡♠✉s ❡✐ ♦❧❡ ❛♥t✉❞ t✐♥❣✐♠✉st❡s ü❤❡s❡❧t ♠äär❛t✉❞✳ ✷✳ ❚õ❡♥ä♦s✉sr✉✉♠ ✭❛✮ ❛♥t✉❞ ❦❛ts❡ ❦õ✐❦✈õ✐♠❛❧✐❦❡ t✉❧❡♠✉st❡ ❤✉❧❦ ✭❜✮ ❦õ✐❣✐ sü♥❞♠✉st❡ ❧♦❡t❡❧✉✱ ♠✐s ❦❛ts❡ t✉❧❡♠✉s❡♥❛ ✈õ✐✈❛❞ t♦✐♠✉❞❛ ✭❝✮ sü♥❞♠✉st❡ t♦✐♠✉♠✐s❡ ✈õ✐♠❛❧✐❦❦✉s❡ ♠äär❛s✐❞ ✭tõ❡♥ä♦s✉s✐✮ ✸✳ ❊❧❡♠❡♥t❛❛rsü♥❞♠✉st❡ ❤✉❧❦ ✲ ❏✉❤✉s❧✐❦✉ ❦❛ts❡ K ❦õ✐❦✈õ✐♠❛❧✐❦❡ t✉❧❡♠✉st❡ ❤✉❧❦ Ω ✹✳ ❙ü♥❞♠✉st❡ ü❤❡♥❞ ✲ ❍✉❧❦❛ A∪B ♥✐♠✳ sü♥❞♠✉st❡ ❆ ❥❛ ❇ s✉♠♠❛❦s✳ ❙✉♠♠❛ t♦✐♠✉♠✐♥❡ tä❤❡♥❞❛❜ ❦❛s ❆ ✈õ✐ ❇ ✈õ✐ ♠õ❧❡♠❛ sü♥❞♠✉s❡ t♦✐♠✉♠✐st✳ ✺✳ ❙ü♥❞♠✉st❡ ü❤✐s♦s❛ ✲ ❍✉❧❦❛ A ∩ B ♥✐♠✳ sü♥❞♠✉st❡ ❆ ❥❛ ❇ ❦♦rr✉t✐s❡❦s✳ ❑♦rr✉t✐s❡ t♦✐♠✉♠✐♥❡ tä❤❡♥❞❛❜ ♥✐✐ sü♥❞♠✉s❡ ❆ ❦✉✐ ❦❛ sü♥❞♠✉s❡ ❇ t♦✐♠✉✲ ♠✐st✳ ✻✳ ❙ü♥❞♠✉st❡ ✈❛❤❡ ✲ ❍✉❧❦❛ AB ♥✐♠ sü♥❞♠✉st❡ ❆ ❥❛ ❇ ✈❛❤❡❦s✳ ❙❡❡ tä❤❡♥❞❛❜ sü♥❞♠✉s❡ ❆ t♦✐♠✉♠✐st ❥❛ ❇ ♠✐...
Ülesanne 1 Hinnata üldkogumi keskmisi: keskmist palka, keskmist kulu spordile ja keskmist kulu meelelahutusele. Leida usaldusvahemikud keskmistele usaldusnivool 0,90 ja 0,99. Keskmise leidmiseks kasutasin valemit : OpenOffices vastas sellele funktsioon AVERAGE. Usaldusvahemike leidmiseks kasutasin funktsiooni CONFIDENCE, kuhu oli ühe argumendina vaja standardhälvet, mille sain funktsiooni STDEVP abil. Alpha on 1-β . Size on valimi suurus(50). Ülesanne 2 Hinnata mittesuitsetajate osakaalu üldkogumis (a) meeste seas, (b) naiste seas usaldusnivool 0,95. Kuna valimi maht jääb alla 30, siis kasutan Studenti jaotust (OpenOffices vastab F^-1 TINV funktsioon) β=0.95 α = (1 + β) / 2 (number) a studenti jaotuse kvantiilide puhul k* = n – 1 (degree_freedom Leian p* = k/n (kus k on mittesuitsetavate arv ja n koguarv) Naistel vahemik (59.2% ; 95.4%) Meestel vahemik (49.3%...
...
1) Üldkogumi keskmise µ hinnang on valimkeskmine: x tulu = 3 385,23 x kulu = 2 894,88 x palk = 5 937,23 , keskmiste saamiseks kasutatud valemit AVERAGE. 95% usaldusvahemik üldkogumi keskmisele: kus: n valimi maht valimstandardhälve Usaldusnivoo 0,95 puhul Tulu Kulu Palk (1842,85, 4927,61) (1700,49, 4089,27) (2877,88, 8996,58) Näiteks tulu puhul kasutatud valemit (AVERAGE(E2:E36) 1,96*(STDEV(E2:E36)/SQRT(COUNT(E2:E36)) , AVERAGE(E2:E36) + 1,96*(STDEV(E2:E36)/SQRT(COUNT(E2:E36)) NB! Kulu ning tulu puhul kasutatud samasid valemeid (vastavate andmetega). 2) Naiste arv antud valimis 10 (valem COUNTIF(C2:C36;2)), seega 10 2...
nr. X1 X2 X3 X4 X5 X6 X7 X8 2 M 35 A 1 EPÜ A 17 359 12 M 28 V 0 EPÜ M 7 309 23 M 48 A 1 TTÜ SL 35 289 24 M 28 A 1 TLÜ SL 12 289 25 M 26 V 0 TLÜ A 3 214 26 M 37 A 2 TLÜ L 15 319 27 M 30 A 2 TÜ M 12 349 32 M 28 V 0 EPÜ A 5 279...
Keskmiselt kulus ülesande lahe x- 17 s- 4,5 t= 2,262157 n- 10 x= 3,219106 0,95 sqrt n 3,16 Vastus: Ülesande lahendamiseks kulus keskmisest 17 minutist +/- 3,219 minutit rohkem/vähem. Ehk vahemikust 13,8 minutit kuni 20,2 minutini. Ülesanne 2 100 ostja küsitlemisel selgus, et keskmiselt kaupadele kulutatav summa on 150 kr standardhälbega 75 kr. Leidke x- 150 SE= 7,5 s- 75 x= 15 n- 100 0,95 sqrt n 10 Vastus: Keskmiselt kaupadele kulutatav summa keskmiselt on +/- 15 kr rohkem/vähem. Ehk vahemikust 135 krooni kuni 165 krooni. Ülesanne 3 160 ostja küsitlemisel selgus, et 20 nendest pidasid toote hinda lii...
Ülesanne 1 Ülesanne 1 On arvutatud kahe erineva tudengite grupi kesk Esimeses grups oli 57 tudengit ning keskmine t teises grupis oli 28 tudengit ning keskmine tulem Kas on alust väitel, et õppejõud hindas esimest xa 50 xb 46 sa 10,3 sb 11,5 na 57 nb 28 H0: µa=µb (tulemused ei erine, õppejõud hinda H1: µaµb (tulemused erinevad, õppejõud hind SE*=SE12+SE22 SE*=1,3642682 +2,1732962 SE* 2,566 temp= x2-x1/SE* Temp -1,559 Tkr= 2,01 VASTUS: Statistiliselt erinevad tulemused oluli Ülesanne 2 Põllumees soovib kindlaks teha, kas tankla tank Selleks teostab ta viis tankimist, tellides iga kord Kodus mõõdab ta saadud kütusekoguse täpse Kas on alust väita, et tanklast saadav kütusekog x- 19,4 s- 0,25 n- 5 µ- 20 H0: µ = 20l (Kütusekogus vastab tellitule) H1: µ 20l (Kütusekogus ei vasta tellitule) SE= s/n SE= 0...
docstxt/135317869158.txt...
Klassikaline või geomeetriline tõenäosus μ(ΩA)=(2,25-2*0,5)=1,25 k V =k! Ck P(A)=1,25/2,25=5/9 Variatsioonid: n n Liitmislause, korrutamislause, tinglik 1) Karbis on 10 pooljuhti, neist 7 hiljuti testitut. Karbist tõenäosus, sõltumatud sündmused, võetakse huupi 5 pooljuhti. Leidke tõenäosus, et sõltumatute katsete seeria nende hulgas on täpselt 3 hiljuti testitut. Liitmislause: P(A1+A2)=P(A1)+P(A2)-P(A1A2) Lahendus: A=“3 pooljuhti 5-st on testitud“ P((A1+A2)+A3)= P(A1)+P(A2)+P(A3)-P(A1A2)- 5 P(A1A3)-P(A2A3)+P(A1A2A3) │Ω│=n= C10 =12 Tinglik tõenäosus: DEF. P(A/B)=P(AB)/P(B) ;...
f-n F(x)=P(X