Funktsiooni graafiku teisendused Heldena Taperson www.welovemath.ee y f (x) ....graafik saadakse funktsiooni y=f(x) graafiku peegeldamisel x- telje suhtes. y 3x 4 y (3 x 4) 3 x 4 y f ( x) ....graafik saadakse funktsiooni y=f(x) graafiku peegeldamisel y- telje suhtes. y 3x 4 y 3 x 4 y b f (x) ....graafiku saame kui funktsiooni y = f(x) graafiku iga punkti ordinaati korrutame arvuga b. y 3x 4 y 2(3 x 4) 6 x 8 y f (k x) ... graafiku joonestamiseks vajalikud punktid saame, kui funktsiooni y = f(x) graafiku iga punkti abtsissi korrutame arvuga k ning seejärel arvutame ordinaadi väärtuse. ...
Trigonomeetrilised funktsioonid Valemid sin2x + cos2x = 1 sin2x = 1 cos2x cos2x = 1 sin2x tanx = sinx / cosx 1 + tan2x = 1 / cos2x sin2x = 2sinx x cosx cos2x = cos2x sin2x tan2x = 2tanx / (1 tan2x) sinx/2 = ± ((1 cosx) / 2) cosx/2 = ± ((1 cosx) / 2) tanx/2 = ± ((1 cosx) / (1 + cosx)) sin(x ± y) = sinx x cosy ± cosx x siny cos(x ± y) = cosx x cosy ±vp! sinx x siny tan (x ± y) = (tanx ± tany) / (1 ±! tanx x tany) sin(90 x) = cosx cos(90 x) = sinx tan(90 x) = cotx cot(90 x) = tanx sin(180 x) = sinx sin(180 + x) = -sinx sin(360 x) = -sinx sin ++-- ; cos +--+ ; tan +-+- sinx = m = x = (-1)n arcsinm + n ; n Z cosx = m = x = ±arccosm + 2n ; n Z tanx = m = x = arctanm + n ; n Z SIN, COS, TAN joonised ! SIN x I - I -3/4 I -/2 I /4 I -/6 I 0 I sin x I 0 I -0,7 I -1 I -0,7 I -0,5 I 0 I x I /6 I /3 I /2 I 5/6 I 2/3 I I sinx I 0,5 I 0,9 I 1 I 0,5...
Mõisted suuliseks arvestuseks 1. Arvjada kui igale naturaalarvule n (alates 1-st) seatakse vastavusse üks kindel arv an, siis saadakse arvjada (arvude järjend, mis võib koosneda kas lõplikust või lõpmatust hulgast arvudest; selle saab kui seada ritta ükskõik mis arve). 2. Aritmeetiline jada jada, milles teisest liikmest alates on iga liikme ja sellele eelneva liikme vahe konstante (jada, kus iga kahe järjestikuse liikme vahe on võrdne). *Jada nimetatakse hääbuvaks ehk nullile lähenevaks, kui jadas järjest kaugemale minnes selle jada liikmed erinevad arvust 0 kui tahes vähe. 3. Aritmeetilise jada üldliige avaldub kujul an = a1 + d (n 1), kus a 1 on aritmeetilise jada esimene liige, d on jada vahe ning n on liikmete arv jadas. 4. Aritmeetilise jada n esimese liikme summa avaldub kujul Sn = (a1 + an) / 2 · n, kus a1 on aritmeetilise jada esimene liige, an on jada üldliige ning n on liikmete arv jadas. 5...
1. Mis on funktsioon? Mis on sõltumatu muutuja, sõltuv muutuja? Kui hulga X igale elemendile x on seatud vastavusse kindel element y hulgast Y. sõltumatu muutuja ehk argument, sõltuv muutuja ehk funktsiooni väärtus 2. Mis on funktsiooni määramispiirkond muutumispiirkond? Mis on funktsiooni loomulik määramispiirkond? Määramispiirkond - argumendi x selliste väärtuste hulk, mille korral on võimalik funktsiooni f(x) väärtust välja arvutada. Muutumispiirkond - muutumispiirkonna Y all mõeldakse funktsiooni kõikvõimalike väärtuste hulka. loomulik määramispiirkond - Argumendi väärtuste hulk, mille korral funktsiooni määrav eeskiri on rakendatav. 3. Millised on funktsiooni põhilised esitusviisid? Graafikuna, tabelina, analüütiline 4. Mis on funktsiooni graafik? Funktsiooni f graafik on kõikide järjestatud paaride (x, f(x)) hulk, kus x on määramispiirkonna X element....
1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas hulka A, hulka B või mõlemasse kuuluvad elemendid. Hulkade A ja B ühendit tähistatakse * Hulkade A ja B ühisosaks ehk korrutiseks nimetatakse hulka, mille moodustavad kõik üheaegselt nii hulka A kui ka hulka B kuuluvad elemendid. Hulkade A ja B ühisosa tähistatakse * Hulkade A ja B vaheks nimetatakse kõigi selliste elementide hulka, mis kuuluvad hulka A, kuid ei...
10.klass a1 b1 c1 1. Reaalarvude piirkonnad kui D = 0; D x = 0; D y = 0, siis = = a 2 b2 c 2 2. Astme mõiste üldistamine a m a n = a m +n c)pole lahendeid a1 b1 c a m : a n = a m -n , kui m > n kui D = 0; D x 0; D y 0, siis = 1 a 2 b2 c 2 ( a b) n = a n b n n 12. Ruutvõrrandi süsteemid a an 13. Kolmerealine determinant = n , kui b 0 b b ...
Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨ avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H...
Matemaatiline anal¨ uu¨s I Jaan Janno ii Sisukord 1 Funktsioonid ja nendega seotud m~ oisted 1 1.1 Reaalarvud ja Arvtelg. Absoluutv¨a¨artuse m~oiste. Reaalarvudest koosnevad hulgad. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 J¨a¨avad ja muutuvad suurused. Funktsiooni m~oiste ja esitusviisid. 3 1.3 Funktsioonide liigid. Konstantne funktsioon. Astme-, eksponent- ja trigonomeetrilised funktsioonid. . . . . . . . . . . . . . . . . . 6 1.4 P¨o¨ordfunktsiooni m~oiste. Logaritmfunktsioon. Arkusfunktsioonid. 8 1.5 Tehted funktsioonidega. Elementaarfunktsioon. Pol¨ unoom ja ratsionaalfunktsioon. . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Ilmutatud ja ilmutamata funktsioonid. Parameetrilisel kujul an- tud jooned ja funktsioonid. . . . . . . . . . . . . . . . . . . . . . 19 1.7 H¨uperboolsed trigonom...
Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 ...
YMM3731 Matemaatiline analu¨u¨s I 2007/08 ~o.-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfu...
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS I OSA SISUKORD 1. ARVUHULGAD …………………………………………………… 2 2. ARITMEETIKA ……………………………………………….…… 3 2.1 Mõningate arvude kõrgemad astmed ………………………….……. 3 2.2 Hariliku murru põhiomadus ………………………………….…….. 3 2.3 Tehetevahelised seosed ……………………………………….…….. 3 2.4 Tehted harilike murdudega ………………………………….……… 4 2.5 Tehete põhiomadused ……………………………………….……… 5 2.6 Näited tehete kohta positiivsete ja negatiivsete arvudega …….…….. 5 2.7 Näited tehete kohta ratsionaalarvudega ……………………….……. 6 2.8 Protsent ja promill …………………………………………….……. 8 2.9 Näited protsentarvutusest …………………………………………... 9 2.10 Arvu absoluutväärtus ………………………………………………. 10 2.11 Ülesanded ……………………………………………………….….. 11 3. ALGEBRA …………………………………………………….……. 12 3.1 Astmed ………………………...
Radiobioloogia ja kiirguskaitse I. Sissejuhatus Radiobioloogia mõiste Inimene on püsivalt ioniseeriva kiirguse mõjusfääris. Looduslik kiirgus, kunstlikult tekitatud kiirgus. Inimtegevuse tõttu lisandub looduslikust foonist saadud elanikkonna keskmisele aastadoosile ca 15-20%, kusjuures kiirguse meditsiiniline kasutamine annab sellest põhiosa. Radioloogiaosakonna töötajad peavad saama teadmised kiirgusfüüsikast ja – bioloogiast ning radioloogiast. Nad peavad kindlustama patsiendi efektiivse diagnostika/ravi, kuid samas saavutama seda patsiendile ohutuimal viisil. Samal ajal peab hästi töötav kiirguskaitseprogramm olema lülitatud rahvuslikku tervisekaitseprogrammi. Põhjus, miks üldes rääkida radiobioloogiast - sest ta on kiirguskaitse teoreetiline alus. Ioniseeriva kiirguse vastastoime elusorganismiga jaguneb kolmeks põhifaasiks (füüsikaline, keemiline ja bioloogiline). 1. 1. Füüsikalises faasis toimub energia neeldumine organismis. T...