Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

RUUTVÕRRATUSTE LAHENDAMINE (0)

1 Hindamata
Punktid

Lõik failist

 
RUUTVÕRRATUS  LAHENDAMINE 
a)  Viia kõik liikmed vasakule poole võrdusmärki, korrastada võrratus 
b)  Leida nullkohad 
c)  Joonistada  parabool  (ka siis kui nullkohti ei ole!!!) 
Kui x2 ees on ’pluss’, siis  avaneb  parabool üles 
Kui x2 ees on ’ miinus ’, siis avaneb parabool allapoole 
d)  Viirutada 
Kui võrratuses on >0, siis viirutada sealt, kus parabool on ülalpool x-telge 
Kui võrratuses on

RUUTVÕRRATUSTE LAHENDAMINE #1
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2018-01-23 Kuupäev, millal dokument üles laeti
Allalaadimisi 9 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor ewew Õppematerjali autor

Sarnased õppematerjalid

thumbnail
2
pdf

Võrratuste näited

teisele poole võrdusmärki 𝑥>1 c) Koondada ja jagada tundmatu ees oleva 1 x kordajaga V: 𝑥 ∈ (1 ; ∞) 2. RUUTVÕRRATUS 3(5 x  11)  x(5 x  11) a) Viia kõik liikmed vasakule poole 5𝑥 2 − 4𝑥 − 33 > 0 võrdusmärki, korrastada võrratus Nullkohad: 𝑥1 = 3; 𝑥2 = −2,2 b) Leida nullkohad c) Joonistada parabool V: x    ;  2,2  3 ;   d) Viirutada -2,2 3 x e) Kirjutada võrratuse lahend 3. KÕRGEMA ASTME VÕRRATUS (𝑥 2 − 𝑥)(2 + 𝑥)(1 − 𝑥) > 0

Matemaatika
thumbnail
6
docx

Ruutvõrratused

x2 ­ 12x + 36 = 0, mille lahendid x1 = x2 = 6. Teeme joonise ja leiame lahendihulga. Vastus. L = (­ ; 6) (6; ). Näide 9. Lahendame võrratuse 5x2 + 20x + 26 < 0. Lahendus. Lahendame võrrandi 5x2 + 20x + 26 = 0. Ruutvõrrandi diskriminant D = ­120. Võrrandil lahendid puuduvad. Parabool avaneb ülespoole ja x ­ telge ei puuduta ega lõika. 4 Vastus. L = Ø. Ülesanne 3. Lahenda ruutvõrratus. 1) ­12x2 ­ 36x 0 2) 3x2 ­ 1200 0 3) ­5x2 + 9x + 2 > 0 4) 4x2 ­ 11x ­ 3 < 0 5) 3x2 + 11x ­ 4 0 6) ­4x2 ­ 7x + 2 0 7) ­5x2 ­ 9x + 2 > 0 8) 3x2 + 14x ­ 5 < 0 9) x2 ­ 10x + 25 0 10)­x2 + 8x ­ 16 0 11) ­4x2 + 4x ­ 1 > 0 12) 9x2 ­ 6x + 1 < 0 13) x2 + 2x + 8 > 0 14) ­x2 + 6x ­ 10 < 0 15) ­2x2 ­ x ­ 10 0 16) 3x2 ­ 2x + 5 0

Matemaatika
thumbnail
17
pdf

Lineaarvõrratused, ruutvõrratused ja murdvõrratused

Lineaarvõrratused, ruutvõrratused ja murdvõrratused Lineaarvõrratus Ühe tundmatuga esimese astme ehk lineaarvõrratuseks nimetatakse võrratust kujul ax + b > 0 või ax + b < 0 või ax + b 0 või ax + b 0, kus a 0 ja b on antud arvud ja tähega x on tähistatud tundmatut. Lineaarvõrratuste lahendamine Lineaarvõrratuste lahendihulgad saame järgmiste teisendustega: 1. viime liikme b võrratuse paremale poolele; 2. jagame saadud võrratuse mõlemaid pooli arvuga a (kui a < 0, muutub seejuures võrratuse märk vastupidiseks). Näide 1 2 x 6 0 2 x 6 x 3 Näide 2 x 9 4 x 3x 9 0 3x 9 x 3 Ruutvõrratus Ühe tundmatuga ruutvõrratuseks nimetatakse teise astme võrratust kujul ax2 + bx + c > 0 või

Matemaatika
thumbnail
14
pdf

Võrratused

N. jt Praktikum po reseniju matematitseskih zadats. Moskva, 1984 (vene keeles). 2 VÕRRATUSED Kaks algebralist avaldist, mis on omavahel seotud märkidega >, või < , moodustavad võrratuse. Tundmatuid sisaldava võrratuse korral tekib selle lahendamise probleem. Vaatleme siin vaid ühe tundmatuga võrratusi. Sellise võrratuse lahendiks nimetatakse tundmatu väärtust, mille puhul võrratus on rahuldatud, st mille asetamisel võrratusse tundmatu asemele saame õige arvulise võrratuse. Lahendada võrratus tähendab leida selle kõik lahendid. Kaks, kolm jne võrratust, mis sisaldavad üht ja sama tundmatut, võivad moodustada võrratuste süsteemi. Lahendada võrratuste süsteem tähendab leida nende võrratuste ühise tundmatu kõik sellised väärtused, mis rahuldavad korraga selle süsteemi kõiki võrratusi.

Matemaatika
thumbnail
22
pdf

Parabool

PARABOOL Parabooliga puututakse kokku juba koolimatemaatikas. Joonistatakse graafikuid, mis avanevad üles- või allapoole, mille haripunkt on koordinaatide alguspunktis või mitte, mis lõikavad x-telge või mitte jne. Järgmine joonis kirjeldab, millise tasandiga tuleb koonust lõigata, et nende lõikejoon oleks parabool. Järgnevalt vaatleme, kuidas parabool defineeritakse. Tegeleme parabooli võrrandiga, mis erineb pisut koolimatemaatikas õpitust. Lisaks joonistame paraboole, mis võivad avaneda nii üles või alla kui ka vasakule või paremale. Esitatud on nii teooria kui näiteülesanded. Iseseisvalt on võimalik läbi lahendada harjutusülesandeid, kus tuleb siiski paber ja pliiats appi võtta. Arvuti teel saab lahendada testi, mis aitab parabooli võrrandist selgust luua. Parabool on joon, mille iga punkti X(x; y) kaugus ühest kindlast sirgest (juhtjoonest) võrdub selle punkti kaugusega ühest kindlast punktist (fookusest).

Kõrgem matemaatika
thumbnail
20
pptx

Ruutfunktsioon ja selle graafik

Ruutfunktsioon ja selle graafik EESMÄRGID Parabooli y = ax2 + k joonestamine Tutvustada lihtsamat parabooli Parabooli y = ax2 + bx +c joonestamine Paraboolide joonestamine Parabooli y = ax2 + k joonestamine Sümmeetriatelg y = x2 x=0 x y (x, y) (–2, 4) y –2 4 –1 1 (–1, 1) 0 0 (0, 0) 1 1 (1, 1) x 2 4 (2, 4) Parabool avaneb ülespoole. Haripunkt (0, 0) Parabooli y = ax2 + k joonestamine Võrrandis y = x2 , mis on a ? a = 1 . Kuid, mis juhtub, kui a ei võrdu 1? Näiteksy võrrandis y = – 4x2 . Mis on a ? a=–4 x y (x, y) x –2 – 16 (–2, –16) –1 –4 (–1, –4) 0 0 (0, 0)

Matemaatika
thumbnail
1
doc

Parabooli skitseerimine uus

Ruutfunktsioon avaldub kujul y = ax2 + bx + c, kus a, b ja c on mistahes arvud ja ruutliikme kordaja a 0. Ruutfunktsiooni y = ax2 + bx + c graafikuks on parabool. Kui a > 0, siis parabooli harud avanevad üles, kui a < 0, siis alla. Parabooli sümmeetriatelge nimetatakse parabooli teljeks ja punkti, kus parabool lõikub oma teljega nimetatakse parabooli haripunktiks. Parabooli skitseerimiseks tuleb leida nullkohad ( võrrandi ax2 + bx + c = 0 lahendid) ja x + x2 haripunkt ( haripunkti abstsissi leiame kas nullkohtade aritmeetilise keskmisena 1 2 b või valemist x h = - ; ordinaadi leidmiseks paneme abstsissi väärtuse funktsiooni 2a 4ac - b 2 avaldisse ning leiame y väärtuse või kasutame valemit y = ).

Geomeetria
thumbnail
40
doc

Keskkooli matemaatika raudvara

...................................................................... 16 2 Determinandid.................................................................................................................... 16 Kahe tundmatuga ruutvõrrandisüsteem..................................................................................17 Tekstülesande lahendamine võrrandi või võrrandisüsteemi abil............................................17 Juurvõrrand.............................................................................................................................18 Absoluutväärtust sisaldav võrrand..........................................................................................18 Arvvõrratus, selle omadused.................................................................................................. 19

Matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun