Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Tuumaenergia (0)

5 VÄGA HEA
Punktid

Lõik failist


Tuumaenergia
2014
Tuumajaamad  maailmas
● elektrienergiat saadakse aatomituuma lõhustumisest
● 2011. aasta mai seisuga oli maailma tuumaelektrijaamades 440 tegutsevat 
reaktorit, mis kokku tootsid 17% maailma elektrienergiast.
● Kõige rohkem on reaktoreid USAs (104), järgnevad Prantsusmaa (58), 
Jaapan (50) ja Venemaa (32).
● Tänapäeval kasutatavate  tuumaelektrijaamade võimsus ulatub 40 
megavatist üle 1 gigavati.
Esimesed tuumaelektrijaamad
● Esimest korda toodeti tuumareaktori abil elektrienergiat 20. detsembril 
1951 USAs Idahos.
● Esimene  tuumaelektrijaam  – Obninski tuumaelektrijaam – alustas tööd 
27. juunil 1954 NSV Liidus Kaluga oblastis Obninskis.
● esimene tööstusliku võimsusega tuumajaam  - 
Calder Halli tuumaelektrijaam Sellafieldis
Tuumaelektrijaamade eelised
●ei  eralda  kasvuhoonegaase
●tekib vähe  tahkeid  jäätmeid
●kulub vähe kütust
Tuumaelektrijaamade ohud
●jäägid on radioaktiivsed
●õnnetuste puhul võivad väga suured alad 
reostuda
●võib rikkuda ökoloogilist tasakaalu
Tuumaenergia kasutamine Eestis
Eestis on tuumaenergia kiire kasutuselevõtu vastu Erakond Eestimaa 
Rohelised, kes on teinud vastavasisulise avaliku pöördumise. Roheliste arvates 
tähendaks praegu tootmis- ning müügivalmis tuumajaama loomine Eestisse 
lisanduvat julgeolekuriski.
2009. aastal kiitis  Riigikogu heaks Eesti  energiamajanduse  arengukava, mis 
näeb ette tuumaenergeetikaalase  teadmuse loomist. Kuigi selle otsusega on 
põhimõtteliselt avatud tee  tuumaenergeetika   arendamiseks , ei ole tuumajaama 
ehitamine Eestisse lähiaastate teema. Vajaliku baasi väljatöötamine, 
oskusteabe omandamine ja projekti planeerimine võtab aastaid.
Tuumajaama asukoha kriteeriumid
Rahvusvaheline Aatomienergiaagentuur on töötanud välja suure hulga tehnilisi 
kriteeriume, mida tuleb tuumajaama asukoha  valikul  arvestada. Tuumajaama 
asukoha otsuse peavad tegema iga riigi võimuorganid ise. Tuumajaama on 
põhimõtteliselt võimalik peaaegu rajada igale poole, kuid olenevalt oludest võib 
väga oluliselt varieeruda tuumajaama rajamise hind.
● inimtegevuse intensiivsus
● jahutusvee kättesaadavus
● vastupidavus, stabi lsus
Levinumad müüdid  seoses tuumaenergiaga
● Tuumaenergeetika on ohtlik - on vastupidav erinevatele 
Vasakule Paremale
Tuumaenergia #1 Tuumaenergia #2 Tuumaenergia #3 Tuumaenergia #4 Tuumaenergia #5 Tuumaenergia #6 Tuumaenergia #7 Tuumaenergia #8 Tuumaenergia #9 Tuumaenergia #10
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 10 lehte Lehekülgede arv dokumendis
Aeg2016-01-07 Kuupäev, millal dokument üles laeti
Allalaadimisi 15 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor JHK Õppematerjali autor

Kasutatud allikad

Sarnased õppematerjalid

thumbnail
5
doc

Tuumaenergia

Tuumaenergia Tuumaenergia on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses. Tänaseks on spetsialistidele piisavalt selge, et tuumaenergia on ainus tõeline elektriallikas inimkonna jaoks, mis ei põhjusta kasvuhooneefekti, happevihmu jm. Fossiilsed kütused annavad praegu üle poole maailma elektritoodangust; hüdroenergia ja tuumaenergia osatähtsus on tunduvalt väiksem. Tuumaenergia üksi ei kindlusta turvalisust ja pidevat elektrivarustatust üle maailma ega saa ka ainsaks faktoriks kahandamaks kasvuhoonegaaside emissiooni, kuid ta mängib tähelepanuväärset rolli antud alal. Tuumajaamad peavad oma ellujäämiseks ka tulevikus tõestama oma turvalisust ja seda, et jäätmete ladustamine ei kahjustaks mingilgi moel keskkonda. Tuumaelektrijaamadel on väga kõrge ehitusmaksumus, kuid selle kompenseerib väga madal kütuse hind. Gaasipõletusjaamu võib ehitada odavalt,

Füüsika
thumbnail
3
odt

Tuumaelektrijaam - plussid ja miinused

näiteks juhtus Tsernobõli tuumaelektrijaamas toimunud õnnetuse tagajärjel. Traditsiooniliselt on tuumaelektrijaamade kasutamise kaasproduktina saadud materjali tuumarelvade valmistamiseks. Tuumakütus ei kuulu taastuvate kütuste hulka. Seetõttu võib tuumaelektrijaamade kasutamine muuta ökosüsteemi energiabilanssi ning rikkuda ökoloogilist tasakaalu. Kas Eesti saaks hakkama tuumaelektrijaamaga? Jah saaks küll kuna see toodab palju energiat ja saastab vähe õhku. Kuna tuumaenergia jaama tootmisvõime on suur suudaks see varustada enamus eestist elektriga. Kuidas tuumaelektrijaam töötab: http://www.tahvel.ee/Fail:Tuumaelektrijaam.swf Pildid: Tuumaelektrijaama skeem. Tuumaelektrijaam.

Füüsika
thumbnail
7
doc

Tuumareaktorid

Briider (ingl breeder - aretaja, sigitaja) ehk paljundusreaktor on selline reaktoritüüp, kus tänu ahelreaktsioonile tekib tuumade lõhustumisel lõhustumisvõimelisi tuumi juurde. Seejuures ümbritseb Maa-sisest tuumajaama ehk georeaktorit vedela välistuuma asemel tahkes olekus niklist ja ränist ehk nikkelsilitsiidist koosnev sfäär. 2005. a. lepiti kokku kuue reaktoritehnoloogia valikus, mis peaksid kujundama tuumaenergia näo lähitulevikus. Kõiki valituid iseloomustab praegustega võrreldes parandatud jätkusuutlikkus, säästlikkus, ohutus, usaldatavus, kindlus terrorirünnaku ja tuumarelvamaterjali diversiooni suhtes ning pikk tööiga (> 60 a). Kõik reaktorid töötavad kõrgetel temperatuuridel, so temperatuuride vahemikus 510-1000°C. Võrdluseks, tänapäeva veereaktorite töötemperatuur on ~330°C. Seejuures neli tüüpi kuuest sobivad tootma

Füüsika
thumbnail
5
docx

Tuumaelektrijaam, aatomi tuuma lõhustumine

aktiivtsooni täielikul sulamisel tekkiva metallikoguse ning välistama selle jõudmise pinnasesse. Tuumaelektrijaamade eluiga on tavaliselt 30-40 aastat. Pärast seda kõrvaldatakse reaktoreist tuumkütus ja jaam konserveeritakse. Jaama radioaktiivse (reaktori-) osalammutamisele saab asuda enamasti alles 10-20 aasta möödumisel pärast jaamaseismajätmist, kui radioaktiivse kiirguse foon on langenud piisavalt madalale. Kuidas tuumaenergia tekib? Tuumaelektrijaamades kasutatakse ära tuumade lõhustumise tagajärjel vabanev energia. Reaktoris luuakse tuumaenergia tootmiseks kontrollitud ahelreaktsioon, kus energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad turbogeneraatorid. Kontrollitud ahelreaktsiooni käigus pommitatakse suure massiarvuga tuumi aeglustatud neutronitega, protsessi tulemusel liitub neutron tuumaga

Füüsika
thumbnail
9
docx

Tuumaelektrijaam

vooga - katkestades kiirendi elektriahela seiskub ka alakriitiline tuumareaktor; 3) soojust ei kasutata auruturbiini käitamiseks vaid väävelhappe lagundamiseks 1200°C juures laguneb väävelhape, mis edasi reageerib joodi ja veega summarselt lagundatakse nii vesi vesinikuks ja hapnikuks; 4) auruturbiini kasutugur on 30%, vesiniku kütuseelemendil 60%, samuti saab vesinikku kasutada autokütusena, nii pole vaja ka bensiini sisse osta. Kuidas tuumaenergia tekib? Tuumaelektrijaamades kasutatakse ära tuumade lõhustumise tagajärjel vabanev energia. Reaktoris luuakse tuumaenergia tootmiseks kontrollitud ahelreaktsioon, kus energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad turbogeneraatorid. Kontrollitud ahelreaktsiooni käigus pommitatakse suure massiarvuga tuumi aeglustatud neutronitega, protsessi tulemusel liitub neutron tuumaga põhjustades

Füüsika
thumbnail
19
pptx

Tuumaenergia powerpoint

Tuumaenergia Rõngu Keskkool Pillerin Palo 9.klass 2010/11 õa Tuumaenergia ajalugu · 1789.a avastas Martin Heinrich Klaproth aine, mille ta nimetas uraaniks(uraandioksiid).S Click to edit Master text styles uri aastal 1817. Second level Third level Fourth level · Metallist uraani sai Fifth level esmakordselt alles Eugen Péligot aastal 1841. Tuumaenergia ajalugu 2

Keemia
thumbnail
8
docx

Tuumaelektrijaam

2. Keevvee reaktor (BWR) 3. Surveraskeveereaktor (PHWR) 4. Täiustatud gaasijahutusega reaktor (AGR) 5. Kergevee grafiitaeglustiga reaktor (RBMK) Järgmise põlvkonna reaktori liigid: 1. Gaasjahutusega kiire reaktor 2. Pliijahutusega kiire reaktor 3. Sulasoolareaktor 4. Naatriumjahutusega kiire reaktor 5. Ülekriitilise veega jahutatud reaktor 6. Ülikõrgtemperatuurne reaktor Termotuumareaktorid Lõhustumine pole ainus võte tuumaenergia vabastamiseks. Energia saab vabaneda ka kergete tuumade ühinemisel, samuti keskmisteks. Kõige soodsam on tuumasünteesiks kasutada kõige kergemat tuuma, milleks on vesinik, et muuta see heeliumiks. Kahjuks pole harilikus vesinikus heeliumi tuuma moodustamiseks vajaminevat neutronit. Samas on loodusliku vesiniku hulgas 0,015% niinimetatud rasket vesinikku ehk deuteeriumi, mille tuum koosneb ühest prootonist ja ühest neutronist. Kahe deuteeriumi tuuma ühinemisel on

Füüsika
thumbnail
9
doc

Tuumajaamad

Ühtlasi see eelis komplitseerib ka reaktori konstruktsiooni ja rakendab ta tööd, sest kütuse pidevaks regenereerimiseks on vajalik spetsiaalne sõlm, milles kogu aeg peab viibima osa reaktoris ringlevast lõhustuvast materjalist. 5 AATOMIELEKTRIJAAMAD Tuumaelektrijaam ehk tuumajaam ehk tuumajõujaam ehk aatomielektrijaam on elektrijaam, kus elektrienergiat saadakse aatomituuma lõhustumisest. Tuumaenergia on tõestatud tehnoloogia, mis annab suure panuse maailma elektrivarustuses. Elekter on praegusel ajal kõige käepärasem ja mitmekülgsem energia vorm ning teadlased ennustavad elektri osatähtsuse suurt kasvu ka tulevikus. Esimest korda toodeti tuumareaktori abil elektrienergiat 20. detsembril 1951 USAs Idahos. Esimene aatomi- ehk tuumaelektrijaam ehitati 1954.a. NSV Liidus Moskva lähistel Kaluga oblastis Obninskis, maailma esimene tuumakütusel toodetud elekter voolas juhtmestikku 27

Füüsika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun