Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Tehnomaterjalid praktikumi aruanne 5 - sarnased materjalid

kõvadus, noolutus, noolutust, katsekehad, praktikumi, faasipiiri, katsekehade, rockwelli, katsetulemused, noolutamise, noolutustemperatuur, materjalitehnika, õppetool, tehnomaterjalid, matb11, praktikumitöö, termotöötluseks, sobivat, karastamine, kuumutamine, jahutamine, noolutamine, kuumutus, jahutamiseks, ülevaatliku, tegime, valisime
thumbnail
8
pdf

Terase termotöötlus aruanne

Tallinna Tehnikaülikool 2014/2015 õ.a Materjalitehnika instituut Materjaliõpetuse õppetool Praktikumi nr. ​ 5​ aruanne aines tehnomaterjalid Üliõpilane: Kristjan Männik Rühm: MATB11 Esitatud:         Töö eesmärk:  Tutvuda terase termotöötlemise tehnoloogiaga, selgitada välja terase  süsinikusisalduse, jahutuskiiruse ja karastamisele järgneva noolutustemperatuuri  mõju terase kõvadusele

Tehnomaterjalid
51 allalaadimist
thumbnail
3
doc

Tutvuda alumiiniumisulami – duralumiiniumi termilise töötlemisega ja uurida termilise töötlemise mõju duralumiiniumi omadustele.

Tallinna Tehnikaülikool 2014/15 õ.a Materjalitehnika instituut Materjaliõpetuse õppetool Praktikumi nr.7 aruanne aines tehnomaterjalid Üliõpilane: Oliver Nõgols Rühm: MATB11 Esitatud: 10.12.14 Töö eesmärk: (Lühidalt kirjeldada praktikumitöö eesmärk) Tutvuda alumiiniumisulami – duralumiiniumi termilise töötlemisega ja uurida termilise töötlemise mõju duralumiiniumi omadustele. Vastavalt Cu sisaldusele määrata duralumiiniumi termotöötluse viis. Töö käigus määrata

tehnomaterjalid
26 allalaadimist
thumbnail
10
docx

Terase termotöötlus, metallide tehnoloogia

Üliõpilane: Õpperühm: Ülesanne: 1. Määrake alltoodud detailide termotöötluse viisid ja režiimid, kandke tulemused tabelisse ning põhjendage kirjalikult tehtud valikuotsuseid. a) Reduktori võll pikkusega 300 mm ja läbimõõduga 40 mm, materjal teras C40E. b) Viil pikkusega 200 mm, ruudukujulise ristlõikega 10 x 10 mm, materjal C125. 2. Koostage lühiülevaade (maht ca 2 lehekülge A4) terase termotöötlusest kõigil alltoodud teemadel: 1) karastamise ja noolutamise eesmärk; 2) kuumutusviiside kirjeldus ja kuumutamise kestuse valik; 3) kuumutustemperatuuri sõltuvus süsinikusisaldusest; 4) valik ja jahutamiskiirus; 5) noolutusviisid ja nende kasutusalad. Tallinn 2015 Metallide termotöötlus Terase tugevuse ja kõvaduse (konstruktsiooniterased) või kõvaduse ja kulumiskindluse (tööriistaterased) tõstmise üheks viisiks on terase karastamine

Materjalitehnika
54 allalaadimist
thumbnail
8
docx

Tutvuda terase termotöötlemise tehnoloogiaga

Tallinna Tehnikaülikool 2018 Mehaanika ja tööstustehnika instituut Praktikumi nr. 5 aruanne aines MTX0010 Materjalitehnika Üliõpilane: Rühm: Esitatud: Töö eesmärk: Tutvuda terase termotöötlemise tehnoloogiaga, selgitada välja terase süsinikusisalduse, jahutuskiiruse ja karastamisele järgneva noolutustemperatuuri mõju terase kõvadusele. Antud töös keskendutakse süsinikteraste termotöötlusele. Kasutatud töövahendid: Kõvadus mõõtmis vahendid, kaks ahju, katsekehad Töökäik: Karastamise tähtsus:

Materjaliõpetus
31 allalaadimist
thumbnail
9
docx

Labori praktikumid

C45 (v-soonega) - 2,4 -50oC Läikiv, teraline Järeldus: Võrreldes purustustööks kulutatud energiat toatemperatuuril ja -50oC, siis on näha, et külmhapruse tõttu muutuvad antud materjalid -50oC juures hapraks ning seetõttu kulub vähem energiat purustustööks. Peale selle mõjutab purustustööd ka soone tüüp: mida teravam soon on, seda vähem energiat kulub purustustööks. Kõvadus Töö eesmärk: -Tutvuda põhiliste kõvaduse määramise meetoditega (Brinell, Rockwell ja Vickers, Barcol); - Valida sobiv meetod kõvaduse määramiseks erinevatele materjalidele; - Võrrelda katsetatud materjalide kõvadust; - Analüüsida seost materjali tõmbetugevuse ning kõvaduse vahel. Kõvaduse määramise meetodid: Brinelli- materjali surutakse kõvasulamkuul(HBW) või karastatud teraskuul(HBS) jõuga 1...3000 kgf

Tehnomaterjalid
83 allalaadimist
thumbnail
14
doc

KAT31_Termotöötluse materjal ja kuesimused

külmsurvetöötlusega), selleks kasutatakse erinevad jahutuskeskkonnad: vedelgaasid või krioheenseadmed. Paljudel juhtudel töötlemine külmaga stabiliseerib metalli struktuur ja omadused, seda küsimust samuti arutatakse konspekti teises osas. Termotöötluse liigitus A Faasi (struktuuri) muutuse kohaselt a) lõõmutus b) ehtne (I liigi) karastus c) polimorfse muutusega (II liigi) karastus d) noolutus e) vanandamine B Detaili töödeldavate kohtade kohaselt a) maht (ruumiline) töötlemine b) pinna töötlemine c) kohalik töötlemine d) järjestikune töötlemine C Detaili valmistamise tehnoloogia kohaselt a) eeltöötlemine b) vahetöötlemine c) lõpptöötlemine

Tehnomaterjalid
161 allalaadimist
thumbnail
32
docx

Mõisted

meetodite abil saavutatakse üha erinevamaid oma- 0,06%. Malmid sisaldavad võrreldes terastega duste kombinatsioone. Selle teeb võimalikuks eel- rohkem fosforit (0,1...0,2%), mis parandab malmide kõige raua polümorfism. valuomadusi, eelkõige vedelvoolavust. Süsinik Tabel 1.8. Tavalisandid terastes C-sisalduse suurenedes kasvab terase kõvadus, tõmbetugevus ja voolavuspiir ning vastupanu väsi- Lisand Sisaldus Mõju terases muspurunemisele; vähenevad aga plastsus- ning %, kuni sitkusnäitajad. Si 0,5 Viiakse terasesse Süsinik avaldab mõju ka terase külmahap- valmistusprotsessis ruslävele, soodustades terase haprumist madalatel

70 allalaadimist
thumbnail
19
rtf

Exami piletite vastused

põhimetalli omadustele. Kuna paljud ehituskonstruktsioonid töötavad tihti madalatel temperatuuridel ja dünaamilistel koor- mustel, siis üheks tähtsamaks omaduste näitajaks on külmahapruslävi. Ehitusterastena kasutatakse: · tavasüsinikteraseid, · mangaanteraseid, · peenterateraseid, · parendatud teraseid, · boorteraseid. 5) Masinaehitusterased ja nende omadused. Kasutamine. Tsementiiditavate terastena kasutatakse madalsüsinikteraseid (0,1...0,25%C), mille kõvadus peale tava- karastust on väike. Peale tsementiitimist (pinnakihi rikastamist süsinikuga, C-sisaldus viiakse ca 1%-ni), karastamist ja madalnoolutamist on nende pinnakõvadus 58...62 HRC, südamiku kõvadus aga 30...42HRC. Tsementiiditavate teraste südamik peab olema heade mehaaniliste omadustega, eriti tähtis on kõrge voolavuspiir, mille tagab eelkõige peeneteraline struktuur. Ka pinnakihis on oluline peeneteraline

176 allalaadimist
thumbnail
47
docx

Tehnomaterjalide eksami materjal

ruumkesendatud kuupvõre tühikutesse, eelkõige tahkudel olevaisse. Kuna tühikute mõõtmed on tunduvalt väiksemad süsiniku aatomite läbimõõdust (tühikute maksimaalne läbimõõt 0,062 nm, süsiniku aatomi läbimõõt 0,154 nm), on süsiniku lahustuvus -rauas äärmiselt väike: temperatuuril 727 °C 0.02%, toatemperatuuril ainult 0.01%. Feriit on sitke ja hästi deformeeritav nii kuumalt kui ka külmalt. Tema kõvadus toatemperatuuril on 60-90 HB. Külmdeformeerimisel kalestub ferriit nagu puhtad metallidki ja tema kõvadus kasvab märgatavalt. Ferriit on ferromagnetiline kuni Curie' temperatuurini 768°C. -ferriit ­ kirstallvõre on ruumkesendatud kuupvõre nagu -feriidilgi, kuid kuna ta eksisteerib tunduvalt kõrgemal temperatuuril kui -feriit(temperatuuri vahemikus 1392°C...1539°C), siis maksimaalne süsiniku lahustuvus temas on 0,1%. Ta ei esine

Tehnomaterjalid
450 allalaadimist
thumbnail
52
odt

Materjaliõpetus

S – NiSiCr 20 5 2 – keraja grafiidiga malm, Ni – 20%, Si – 5%, Cr – 2%. Malmide tähistsüsteemi EN 1560 kohaselt tähistatakse legeermalmi koostise järgi, näiteks EN-GJLA-XNiCuCr 15-6-2 on liblegrafiidiga (L), austeniitstruktuuriga (A) kõrglegeeritud (X) malm, mis sisaldab 15% Ni, 6% Cu, 2% Cr. Abrasiivkulumiskindlate malmide liigitähis EN 12513 (2001) kohaselt on GJN. Liigitähise järel näidatakse malmi Vickersi kõvadus, näiteks EN GJN-HV600 on malm (GJ), milles puudub grafiit (N) ja mille Vickersi kõvadus on 600. 3. TERAS, TOOTMINE. Terased on raua sulamid, mis sisaldavad süsinikku piires 0,05-2,14%. Kui süsinikusisaldus on alla 0,05%, on tegemist praktiliselt puhta rauaga ehk tehnilise rauaga (kasutatakse elektrotehnikas). Tehniliselt puhast rauda tuntakse armkorauana. See nimetus ARMCO on lühend USA firma American Rolling Mill Company nimetusest. Terasesulatuse põhimeetodid:

Materjaliõpetus
37 allalaadimist
thumbnail
20
docx

Materjaliõpetuse eksami kordamisküsimuste vastused.

valmistatakse proovikeha. Plastsus on materjali võime purunemata muuta talle rakendatud väliskoormuse mõjul oma kuju ja mõõtmeid ning säilitada jäävat (plastset) deformatsiooni pärast väliskoormuse lakkamist. - metallide kalestumine. Metall justkui tugevneb plastse deformatsiooni käigus ­ leiab aset kalestumine (work hardening, cold hardening, strain hardening). Plastse deformatsiooni käigus muutuvad metalli mehaanilised omadused: suureneb tõmbetugevus, voolavuspiir ja kõvadus, väheneb plastsus ­ seda enam, mida suurem on deformatsiooniaste. Põhjuseks on plastse deformatsiooni tulemusena defektide, eriti dislokatsioonide arvu suurenemine kristallivõres, mis tõstabki vastupanu edasisele deformeerimisele. 2. Rauasulamid: - raud ja süsinik, Suurem osa rauasulamitest on süsinikku sisaldavad sulamid - rauasüsinikusulamid (iron- carbon alloys), mis jagunevad järgmiselt: - terased, mille süsinikusisaldus on kuni 2,14%;

Materjaliõpetus
194 allalaadimist
thumbnail
86
pdf

Materjalid

) ning keskmetalle ja -sulameid (tihedus üle 5000 kuid alla 3 10 000 kg/m ). Tehnikas kasutatavaist metallidest kergeimaks on magneesium, raskeimaks aga plaatina. Füüsikalised omadused Mehaanilised Tehnoloogilised Talitlusomadused omadused omadused Tihedus Tugevus Valatavus Korrosioonikindlus Sulamistemperatuur Kõvadus Survetöödeldavus Kulumiskindlus Soojuspaisumine Sitkus Lõiketöödeldavus Pinnaomadused Soojusjuhtivus Plastsus Termotöödeldavus Tulekindlus Elektrijuhtivus Keevitatavus Soojuspüsivus Magnetism Joodetavus Ohutus

335 allalaadimist
thumbnail
252
doc

Rakendusmehaanika

2.1. Materjalide omadused Materjalide omadused võib jagada kolme gruppi: füüsikalised, mehaanilised ja tehnoloogilised omadused (vt. Tabel 2.1). Materjalide kasutusomadusi iseloomustavad talitlusomadused. Tabel 2.1. Materjalide omadused. Füüsikalised Mehaanilised Tehnoloogilised Talitlusomadused omadused omadused omadused Tihedus Tugevus Valatavus Korrosioonikindlus Sulamistemperatuur Kõvadus Survetöödeldavus Kulumiskindlus Soojuspaisumine Sitkus Lõiketöödeldavus Pinnaomadused Soojusjuhtivus Plastsus Termotöödeldavus Tulekindlus Elektrijuhtivus Keevitatavus Soojuspüsivus Magnetilisus Joodetavus Ohutus Keskkonnasõbralikkus Materjalide füüsikalised omadused

Materjaliõpetus
142 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun