Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Neljataktiline sisepõlemismootor ehk Otto-mootor (0)

1 Hindamata
Punktid
Vasakule Paremale
Neljataktiline sisepõlemismootor ehk Otto-mootor #1 Neljataktiline sisepõlemismootor ehk Otto-mootor #2 Neljataktiline sisepõlemismootor ehk Otto-mootor #3 Neljataktiline sisepõlemismootor ehk Otto-mootor #4 Neljataktiline sisepõlemismootor ehk Otto-mootor #5 Neljataktiline sisepõlemismootor ehk Otto-mootor #6 Neljataktiline sisepõlemismootor ehk Otto-mootor #7 Neljataktiline sisepõlemismootor ehk Otto-mootor #8 Neljataktiline sisepõlemismootor ehk Otto-mootor #9
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 9 lehte Lehekülgede arv dokumendis
Aeg2019-03-03 Kuupäev, millal dokument üles laeti
Allalaadimisi 1 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor tom5143123 Õppematerjali autor
Kirjeldab sisepõlemismootori tööpõhimõtet

Sarnased õppematerjalid

thumbnail
9
odp

Neljataktiline sisepõlemismootor ehk Otto-mootor

Neljataktiline sisepõlemismootor ehk Otto-mootor Ajalugu Leiutajaks peetakse Nikolaus August Otto 1876. aastal kohandas Otto mootorit töötama nii gaasil kui piiritusel Taktid 1) Sisselasketakt 2) Survetakt 3) Töötakt 4) Väljalasketakt Tööpõhimõte Kütusesegus sisalduv energia muudetakse töötakti ajal plahvatuse käigus mehhaaniliseks energiaks Saadud energia kantakse üle mööda kolbi ja kepsu, mis liiguvad ühesuunaliselt, väntvõllile Väntvõll pannakse pöörlema, ning väntvõlli kaudu kantakse saadud mehhaaniline energia üle käigukastile või kardaanile, mille abil kantakse jõud mootorist mehhaanilist energiat vajavale seadmele Diisel- ja bensiinimootor Diiselmootoris pannakse kütusesegu plahvatama suure surve tagajärjel Bensiinimootoris pannakse kütusesegu plahvatama sädemega küünlast Diiselmootor seisatakse kui

Auto õpetus
thumbnail
3
docx

Energia kursuse I töö kordamisküsimused

Energia kursuse I töö kordamisküsimused 1. Nimetada termodünaamika I ja II seadus I Energia ja mass on üks ja seesama asi II Soojus ei saa minna iseeneslikult külmemalt kehalt soojale. 2. Nimetada erinevad energia liigid ning tuua iga liigi kohta 1 näide, kus seda leida. 1) Tuuma/termotuumaenergia 2) Mehaanilineenergia (valguse/hüdro/tuule) 3) Elektrienergia 4) Keemilineenergia(põlevkivi (peidus keemilistes sidemetus)) 5) Kiirgusenergia (päikesepaneelid) 6) Gravitatsioonienergia 7) Ionisatsioonienergia 3. Temperatuuri füüsikaline sisu. Molekulide võnkumise kiiruse näit ehk kineetiline energia. Mida madalam temp. Seda vähem molekulid liiguvad. 4. Kuidas (mil moel) liigub energia soojemalt kehalt külmemale üle. Protsessi kirjeldamine. (füüsiliselt või infrapunakiirgusena) 5. Absoluutne temperatuuri skaala. Kuidas see saadi? Temperatuur, mida loetakse absoluutsest nullpunktist. Tähis K (kelvin), T= t kraadi

Füüsika
thumbnail
4
docx

Füüsika kordamine – Molekulide soojusliikumine ja termodünaamika – konspekt

tekitades vee loodusliku ringkäigu 25. Millist protsessi nimetatakse adiabaatiliseks protsessiks? - Protsess, mille korral ei toimu soojusvahetust väliskeskkonnaga; Q=0. 26. Sõnasta termodünaamika II seadus. - Soojus ei saa minna iseeneslikult külmemalt kehalt soojemale. 27. Enimkasutatavad soojusmasinad, kasutegur. - Auruturbiin ja sisepõlemismootor; kasutegur on mehaaniline töö ja soojendist saadud energia suhe. 28. Sisepõlemismootori neli takti õiges järjekorras. - Sisselasketakt, survetakt, töötakt, väljalasketakt 29. Kus toodetakse põhiline osa maailma elektrienergiast; kirjelda seda protsessi. - Soojus- ja tuumaelektrijaamades; nendes toodab elektrit auruturbiin, mille paneb enamasti käima vee soojendamisest saadud kõrge rõhuga aur, vett soojendatakse fossiilsete kütuste põletamisega või tuumareaktsioonides eraldunud soojusega, kiire

Füüsika
thumbnail
1
docx

Termodünaamika kokkuvõte

Termodünaamika kirjeldab ainete omadusi ilma aine siseehitusse tungimata, kasutades makroparameetreid (ainehulk) on termodünaamika aluseks printsiibid, I printsiip ­ süsteemile juurde antev soojushulk kulub süsteemi siseenergia suurendamiseks ja mehaaniliseks tööks, mida tehakse välisjõudude vastu (paisumine), II printsiip ­ suletud süsteemi soojusliku protsessi tulemusena entriipia kasvab, temp väheneb (soojus ülekanne ei saa iseenesest toimuda külmemalt kehalt soojemale), siseenergia ­ moodustub molekulide kineetilisest ja potensiaalsest energiast (olek, temp), soojusülekanne ­ siseenergia levimine ühelt kehalt teisele, liigid: soojusjuhtivus ­ soojusülekanne, kus energia levib ühelt aineosakeselt teisele molekulivaheliste põrgete tõttu, ilma, et aine ümber paikneks, soojuskiirgus ­ soojuskiirgus, kus energia levib elektromagnetlainete kiirgamise ja neelamise tõttu, toimub ka vaakumis, kuna ainet pole vaja, konvektsioon ­ soojusülekanne, kus energia levib

Füüsika
thumbnail
15
pdf

TERMODÜNAAMIKA ALUSED

KOOLIFÜÜSIKA: SOOJUS 2 (kaugõppele) 5. TERMODÜNAAMIKA ALUSED 5.1 Termodünaamika I seadus Termodünaamika I seadus annab seose kehale antava soojushulga, keha siseenergia ja paisumistöö vahel Q = U + A , kus Q on juurdeantav soojushulk, U siseenergia muut ja A paisumistöö. Juhul kui keha saab väljastpoolt mingi soojushulga, on Q positiivne ( Q > 0), juhul kui keha annab ära mingi soojushulga, on Q negatiivne ( Q < 0). Juhul kui keha teeb paisumisel (kasulikku) tööd, on A positiivne ( A > 0), juhul kui aga keha kokkusurumiseks tehakse (välist) tööd, on A negatiivne ( A < 0). Keha siseenergia on molekulide soojusliikumise summaarne kineetiline energia ja molekulide vastastikmõju potentsiaalse energia summa, ideaalse gaasi korral aga summaarne kineetiline energia. Soojushulk on energia, mis antakse kehale soojendamisel, või võetakse kehalt jahutamisel. Soojushulk arvutatakse valemist Q = c m T , kus c on aine erisoojus, m keha mass ja T temperatuuri muut. I

Füüsika
thumbnail
15
pdf

TERMODYN

KOOLIFÜÜSIKA: SOOJUS 2 (kaugõppele) 5. TERMODÜNAAMIKA ALUSED 5.1 Termodünaamika I seadus Termodünaamika I seadus annab seose kehale antava soojushulga, keha siseenergia ja paisumistöö vahel Q = ∆U + A , kus Q on juurdeantav soojushulk, ∆U siseenergia muut ja A paisumistöö. Juhul kui keha saab väljastpoolt mingi soojushulga, on Q positiivne ( Q > 0), juhul kui keha annab ära mingi soojushulga, on Q negatiivne ( Q < 0). Juhul kui keha teeb paisumisel (kasulikku) tööd, on A positiivne ( A > 0), juhul kui aga keha kokkusurumiseks tehakse (välist) tööd, on A negatiivne ( A < 0). Keha siseenergia on molekulide soojusliikumise summaarne kineetiline energia ja molekulide vastastikmõju potentsiaalse energia summa, ideaalse gaasi korral aga summaarne kineetiline energia. Soojushulk on energia, mis antakse kehale soojendamisel, või võetakse kehalt jahutamisel. Soojushulk arvutatakse valemist Q = c m ∆T , kus c on aine erisoojus, m keha mass ja ∆T temperatu

Kategoriseerimata
thumbnail
15
pdf

Füüsika ülesanded

KOOLIFÜÜSIKA: SOOJUS 2 (kaugõppele) 5. TERMODÜNAAMIKA ALUSED 5.1 Termodünaamika I seadus Termodünaamika I seadus annab seose kehale antava soojushulga, keha siseenergia ja paisumistöö vahel Q = ∆U + A , kus Q on juurdeantav soojushulk, ∆U siseenergia muut ja A paisumistöö. Juhul kui keha saab väljastpoolt mingi soojushulga, on Q positiivne ( Q > 0), juhul kui keha annab ära mingi soojushulga, on Q negatiivne ( Q < 0). Juhul kui keha teeb paisumisel (kasulikku) tööd, on A positiivne ( A > 0), juhul kui aga keha kokkusurumiseks tehakse (välist) tööd, on A negatiivne ( A < 0). Keha siseenergia on molekulide soojusliikumise summaarne kineetiline energia ja molekulide vastastikmõju potentsiaalse energia summa, ideaalse gaasi korral aga summaarne kineetiline energia. Soojushulk on energia, mis antakse kehale soojendamisel, või võetakse kehalt jahutamisel. Soojushulk arvutatakse valemist Q = c m ∆T , kus c on aine erisoojus, m keha mass ja ∆T temperatu

Kategoriseerimata
thumbnail
6
docx

Füüsika kontrolltöö termodünaamika

välja ja külm osa on jäetud sisse. 17) Mis on termodünaamika? Termodünaamika on teadusharu, mis käsitleb soojusülekandega seotud kõige üldisemaid seaduspärasusi (nt soojuse muundamine tööks). 18) Mille arvel teevad soojusmasinad tööd? Soojusmasinad teevad tööd soojusenergia arvelt. 19) Millises protsessis saavad soojusmasinad tööd teha? Soojusmasinad saavad tööd teha ainult tsüklilistes protsessides (kahe- ja neljataktiline mootor). 20) Kas kogu kütuse põlemisel vabanev soojus muundub tööks? Põhjenda. Kütuse põlemisel vabanevat kogu soojust ei ole võimalik tööks muundada, sest osa soojust eraldub keskkonda ja osa soojendab mootorit. 21) Mida näitab soojusmasin kasutegur? Soojusmasina kasutegur näitab, kui suure osa soojusest soojusmasin muundab Q 1−Q 2 mehaaniliseks tööks. η = ∗100 (reaalne kasutegur)

Termodünaamika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun