Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Materjalide omadused (0)

3 KEHV
Punktid

Lõik failist


Materjalide omadused


Materjalide valikul ja nende kasutusalade määrat­lemisel pakuvad eelkõige huvi materjalide oma­dused, mis on ühelt poolt määratud nende struk­tuuriga, teiselt poolt nende saamise ja neist detailide valmistamise tehnoloogiaga. Materjalide omadused võib grupeerida füüsikalisteks, mehaanilisteks ja tehnoloogilisteks. Materjali kasutusomadusi iseloo­mustavad talitlusomadused.
Materjalide füüsikalised omadused
Materjalide olulisemateks füüsikalisteks omadusteks on tihedus ja sulamistemperatuur , mis on ka materjalide, eelkõige metallide liigitamise aluseks.
Tihedus
Erinevad materjaligrupid (metallid, plastid, keraa­mika) erinevad eelkõige oma tiheduse poolest. Tiheduse ühikuks on mahuühiku mass, kg/m3. Plastidel on tihedus 1000…2000 kg/m3,
Materjalide omadused #1 Materjalide omadused #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2009-09-19 Kuupäev, millal dokument üles laeti
Allalaadimisi 34 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor wirx911 Õppematerjali autor
Materjalide omadused

Sarnased õppematerjalid

thumbnail
14
doc

Metallurgia-kõrgahju tehnoloogia

Kõrgahju täidiseks ehk lähteaineteks on: 1) rauamaak: · punane rauamaak ehk hematiit Fe2O3 · magnetiit Fe3O4 · pruun rauamaak ehk limoniit n Fe2O3 . m H2O · raudpagu ehk sideriit FeCO2 2) mangaanimaak MnO2, Mn3O4, Mn2O3 3) räbustid : · lubjakivi CaCO3 · dolomiit 4) koks 5) kõrgahjugaas + õhk ( viimasel ajal O2 ) Kõrgahju materjalide bilanss Täidis Saadused Rauamaak 2030 kg Malm 1000 kg Mangaanimaak 146 kg Räbu (slakk) 755 kg Lubjakivi 598 kg Kõrgahju gaas 5217 kg Koks 971 kg Kõrgahju tolm 348 kg Kõrgahjugaas 3575 kg Kokku: 7320 kg Kokku: 7320 kg Kõrgahju põhimõtteline skeem

Kategoriseerimata
thumbnail
32
doc

Metallurgia-kõrgahju tehnoloogia

Kõrgahju täidiseks ehk lähteaineteks on: 1) rauamaak:  punane rauamaak ehk hematiit Fe2O3  magnetiit Fe3O4  pruun rauamaak ehk limoniit n Fe2O3 . m H2O  raudpagu ehk sideriit FeCO2 2) mangaanimaak MnO2, Mn3O4, Mn2O3 3) räbustid :  lubjakivi CaCO3  dolomiit 4) koks 5) kõrgahjugaas + õhk ( viimasel ajal O2 ) Kõrgahju materjalide bilanss Täidis Saadused Rauamaak 2030 kg Malm 1000 kg Mangaanimaak 146 kg Räbu (šlakk) 755 kg Lubjakivi 598 kg Kõrgahju gaas 5217 kg Koks 971 kg Kõrgahju tolm 348 kg Kõrgahjugaas 3575 kg Kokku: 7320 kg Kokku: 7320 kg Kõrgahju põhimõtteline skeem

Tehnoloogia
thumbnail
8
docx

Materjal - konspekt

Materjaliõpetus Ranner Alasild EL108 Õpetaja: Märt Varul Õppeaasta: 2008-2009 Sissejuhatus Sõna materjal tuleneb ladinakeelsest sõnast materia, mis tähendab ainet. Materjalid mis on märit loodusest on looduslikud materjalid. Tehnikas kasutatakse materjalid ­ tehnomaterjalid. Metall, plast, keraamilised ja kamparitmaterjalid on peamiselt masinates ja aparaatides. Enam levinumalt on kasutusel vähemalt 400. Sorti teraseid, üle 200. Liigi plaste. Materjalide struktuur ja omadused Materjalide aatomistruktuur

Kategoriseerimata
thumbnail
52
pdf

Metallide Tehnoloogia 1 Referaat

ruumkesendatuks. 3. Kristalliseerumine Kristalliseerumisprotsess algab kristalliseerumiskeskmete ehk –tsentrite tekkimisega sulas metallis ja jätkub nende arvu ning nende ümber kristallide mõõtmete kasvuga. Metalli või sulami vedelast olekust tahkesse üleminekul moodustuvad kristallid kasvavad vabalt ja omavad korrapärase geomeetrilise kuju. Joonis 4. Kristalliseerumisprotsess 4 4. Materjalide füüsikalised, tehnoloogilised ja mehaanilised omadused Materjalide valikul ja nende kasutusalade määrat- lemisel pakuvad eelkõige huvi materjalide oma- dused, mis on ühelt poolt määratud nende struk- tuuriga, teiselt poolt nende saamise ja neist detailide valmistamise tehnoloogiaga. 4.1. Materjalide füüsikalised omadused Tihedus 3 3 Tiheduse ühikuks on mahuühiku mass kg/m

Metalliõpetus
thumbnail
3
odt

Essee mitteraudmetallid ja sulamid

Alumiiniumil on hea elektrijuhtivus, mis soosib tema kasutamist elektrotehnika valdkondades. Vask ja vasesulamid Vask on üks vanimaid inimkonnale teadaolevaid metalle. Vask on olnud kasutusel enam kui 5000 aastat. Tänaäeval on palju kasulikke vasesulameid, kuid metalli kõrgest hinnast tingituna on need paljudel juhtudel asendumas odavamate materjalidega nagu alumiinium ja plastikud. Puhta vase nagu alumiiniumigi mehaanilised omadused sõltuvad suuresti deformatsiooniastmest külmdeformeerimise ja kalestunud metalli järgnevast lõõmutamisest. Vaske legeeritakse mitmesuguste elementidega ja saadakse kasulikke sulameid, millest peamised on ­ vasetsingisulamid e messingid (valge vask) ­ vasetina, vasealumiiniumi jt sulamid e pronksid Nikkel ja niklisulamid Puhas nikkel on plastme, hästi töödeldav ja korrosioonikindel metall. Suur osa niklist kasutatakse

Keemia
thumbnail
12
docx

Tehnikas kasutatavad materjalid

metallide olulisus tipus.(1,2 MS). Metallide kasutus väheneb, nende asemel luuakse teisi materjale.(liigume kasutuse poolest tagasi kiviaega, metalle hakkavad asendama keraamilised materjalid.) plastid (polümeerid): 10000 eKr Kasutati Puitu, nahka, erinevaid looduslike kiude. Tänapäeval plastid, 19saj võetakse kasutusele kumm(looduslik). 20 saj alguses avastatakse sünteetiline kumm(pakeliit). Sellest algas plastid võidukäik. komposiitmaterjalid- Kõrtest ja mudast tehtud trellised- Materjal mis koosneb vähemalt kahest materjalist. Esimene komposiit oli kivi, mille sisse pandi heina, et saada tugevamat ehitusmaterjali. 1980 algas nende uus võidukäik, hakati looma väga olulisi komposiite, nagu klaaskiuga tugevdatud vaigud. Ja ka süsinikkiuga tugevdatud vaigud. Oluline on ka Kevlar. keraamilised materjalid- Eelajaloos klaas(kristuse sünni ajal), savipotid jms(eKr). 1980 hakkavad levima rasked keraamilised materjalid- Alumiinium oksiid- Auto süüteküünla isolaator

Tehnomaterjalid
thumbnail
20
docx

Materjaliõpetuse eksami kordamisküsimuste vastused.

MATERJALIÕPETUS ( kordamiseks ) 1.Metallide ja sulamite struktuur ning omadused: - metallide struktuur: Metallide kristalliline struktuur Aatomkristallilise või lihtsalt kristallilise struktuuri all mõeldakse aatomite (ioonide) omavahelist paigutust reaalselt esinevas kristallis. Metallis paiknevad aatomid kindla seaduspärasuse kohaselt, moodustades korrapärase kristallivõre. Selline aatomite paigutus vastab aatomite omavahelise mõju minimaalsele energiale (aatomite ideaalsele paigutusele). - kristallvõre tüübid,

Materjaliõpetus
thumbnail
8
docx

Kordamisküsimused aines Rakenduskeemia

kalorite määra. 4. Millega tegeleb keemia ja mis on keemia harud (iseloomustage neid)? Keemia on teadus ainetest ja nende muundumisprotsessidest, mille käigus ühed ained muunduvad teisteks keemiliste sidemete ümberjaotumise ning elektronkatete ümberformeerumise tõttu. Keemia klassikalised (põhi)harud ·Füüsikaline keemia ­ keemia üldised põhialused. ·Orgaaniline keemia ­ süsinikuühendite reaktsioonid ja omadused. ·Anorgaaniline keemia ­ kõigi ülejäänud elementide ühendite reaktsioonid ja omadused. Keemia eriharud ·Analüütiline keemia ­ objektide keemilise koostise määramine. ·Biokeemia ­ bioloogiliselt oluliste ainete, protsesside ja reaktsioonide uurimine. ·Teoreetiline keemia ­ ainete struktuuri ja omaduste uurimine matemaatiliste mudelite kaudu. ·Keemiainseneriteadus ­ tööstuslike keemiliste protsesside uurimine. 5. Keemia makroskoopiline ja mikroskoopiline tase (näited).

Rakenduskeemia




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun