Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

KT 12 klass (1)

5 VÄGA HEA
Punktid

Lõik failist

KONTROLLTÖÖ
12.KL.
VEKTOR TASANDIL A

  • Kolmnurga ABC kaks tippu on A(4;-1), B(-3; -2). Arvuta puuduva tipu C koordinaadid, kui vektor BC =(6;8). Määrake tekkinud kolmnurga liik, arvutage ümbermõõt ja pindala.
  • Rööpküliku KLMN tipud on K(-3; 0), L(-5;7), M(5;3). Lida puuduva tipu N koordinaadid, tipu L juures olev rööpküliku nurk ning arvutada diogonaali LN pikkus.
  • On antud vektorid a = (a;-3), b =(2;5), c = (-3;4).
    Leida: 1)a+b+c
    2)/a/+/b-c/
    3)(a+b)*(b-c)
  • Leida x nii, et vektorid oleksid kollineaarsed , kui u = (2;x+5) v=(-3; 12)

  • KT 12 klass #1
    Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
    Leheküljed ~ 1 leht Lehekülgede arv dokumendis
    Aeg2008-11-30 Kuupäev, millal dokument üles laeti
    Allalaadimisi 49 laadimist Kokku alla laetud
    Kommentaarid 1 arvamus Teiste kasutajate poolt lisatud kommentaarid
    Autor KiQke Õppematerjali autor
    lahendusteta!

    Sarnased õppematerjalid

    thumbnail
    18
    ppt

    Vektorid ja koordinaadid

    Vektorid Vektorid Matemaatikas, füüsikas jt. loodusteadustes vaadeldavad suurused skalaarsed vektoriaalsed (neid iseloomustab (neid iseloomustab lisaks kindel arv) arvulisele väljendusele ka fikseeritud suund) pikkus kiirus vanus kiirendus mass jõud Vektorid Öeldakse, et lõigu AB puhul on määratud suund, kui on fikseeritud, kumba punkti A või B loetakse alguspunktiks, kumba lõpp-punktiks. Lõiku, millel on määratud suund, nimetatakse vektoriks. Vektorit tähistatakse kas üheainsa tähega või kahe suure tähega, mille kohal on nool: a, b, AB Vektori kui suunatud lõigu pikkuseks nimetatakse selle lõigu pikkust. Vektori a pikkust märgitakse sümboliga a või a. Ve

    Kehaline kasvatus
    thumbnail
    1
    pdf

    Kodune AT-vektor ruumis

    ® Kodune kontrolltöö_vektor ruumis 12.klass Esitamistähtaeg: 26.nov.2013 Lahendused võib saata ka meili peale. 1. A...H on rööptahukas (vt joonist). Avaldage vektorite , ja kaudu vektorid 2. Kirjeldage vektori asendit koordinaatteljestikus. a) b) c) 3. Vektorid on rakendatud koordinaatide alguspunkti Arvutage nende vektorite lõpp-punktide poolt määratud nelinurga ümbermõõt 4. Leidke parameetri m väärtused, mille korral vektorid ja on risti. 5. Kas vektorid ja asuvad ühel sirgel? 6. Kas punktid , võivad olla püramiidi tippudeks? 7. Kontrolli, kas vektor on avaldatav vektorite ja kaudu? 8.

    Matemaatika
    thumbnail
    18
    ppt

    Vektorid

    Vektorid Vektorid Matemaatikas, füüsikas jt. loodusteadustes vaadeldavad suurused skalaarsed vektoriaalsed (neid iseloomustab (neid iseloomustab lisaks kindel arv) arvulisele väljendusele ka fikseeritud suund) pikkus kiirus vanus kiirendus mass jõud Vektorid Öeldakse, et lõigu AB puhul on määratud suund, kui on fikseeritud, kumba punkti A või B loetakse alguspunktiks, kumba lõpp-punktiks. Lõiku, millel on määratud suund, nimetatakse vektoriks. Vektorit tähistatakse kas üheainsa tähega või kahe suure tähega, mille kohal on nool: a, b, AB Vektori kui suunatud lõigu pikkuseks nimetatakse selle lõigu pikkust. Vektori a pikkust märgitakse sümboliga a või a. Ve

    Matemaatika
    thumbnail
    18
    ppt

    Vektorid (konspekt)

    Vektorid Vektorid Matemaatikas, füüsikas jt. loodusteadustes vaadeldavad suurused skalaarsed vektoriaalsed (neid iseloomustab (neid iseloomustab lisaks kindel arv) arvulisele väljendusele ka fikseeritud suund) pikkus kiirus vanus kiirendus mass jõud Vektorid Öeldakse, et lõigu AB puhul on määratud suund, kui on fikseeritud, kumba punkti A või B loetakse alguspunktiks, kumba lõpp-punktiks. Lõiku, millel on määratud suund, nimetatakse vektoriks. Vektorit tähistatakse kas üheainsa tähega või kahe suure tähega, mille kohal on nool: a, b, AB Vektori kui suunatud lõigu pikkuseks nimetatakse selle lõigu pikkust. Vektori a pikkust märgitakse sümboliga a või a. Ve

    Matemaatika
    thumbnail
    1
    pdf

    Vektor. Joone v�rrand

    Kodune arvestuslik töö. Vektor. Joone võrrand. 11.klass Esitamistähtaeg: 16.10.2012 Konsultatsioon: kokkuleppel või reedel 8.tund või meili teel ([email protected]) NB! Vormistus peab olema korrektne, täiuslik! ÜL.1 Ristküliku ABCD üheks tipuks on punkt A(4; 3), tipp B asub x-teljel ja küljega AB paralleelne külg CD asub sirgel x ­ y + 7 = 0. 1) Arvuta ristküliku ABCD tippude B, C ja D koordinaadid ning joonesta ristkülik ABCD koordinaattasandile. 2) Koosta sirge võrrand, millel asub ristküliku diagonaal AC. 3) Arvuta ristküliku ABCD ümbermõõdu täpne väärtus. 4) Koosta ristküliku ABCD ümberringjoone võrrand. ÜL. 2 Punktist A(-2; 2) on joonestatud vektor = (6; 2). Läbi punkti D(-3; -5) on joonestatud sirge DC, mis on paralleelne sirgega AB. Punktide A, B, C ja D järjestikusel ühendamisel saadakse täisnurkne trapets, mille täisnurk on tipu B juures. 1) Tee joonis. 2) Koosta sirgete DC ja BC võrrandid. 3

    Matemaatika
    thumbnail
    3
    doc

    Kordamine III(sirge, ringjoon, parabool, vektor)

    Kordamine III(sirge, ringjoon, parabool, vektor) 1. On antud kolmnurk tippudega A(1;2), B(4;3) ja C(2;5). Leidke sirgete AB ja AC võrrandid ning lõikepunktid koordinaattelgedega; 2) Leidke läbi tipu C joonestatud küljega AB paralleelse sirge võrrand; 3) Leidke läbi tipu C joonestatud küljega AB ristuva sirge tõus. 2. Lõik otspunktidega on ringjoone diameetriks. Leidke: 1) ringjoone võrrand; 2) sellele ringjoonele punktides (2,5; 4,5) ja (0;2) joonestatud puutujate võrrandid ja nende puutujate lõikepunkt. 3. Tuletage joone võrrand, kui joone iga punkti kaugused punktidest M(0;-3) ja N(2;3) on võrdsed. Näidake, et otsitav joon on lõigu MN keskristsirge. 4. Parabool läbib punkte (-1;0), (5;0) ja (0;-10). Leidke parabooli võrrand ja tema haripunkti koordinaadid ning puutuja võrrand punktis (0;-10). 5. Leidke parabooli y = x2 ­ 2x haripunkti koordinaadid. 1) Vektori v =(a;9) alguspunkt asetseb antud parabool

    Matemaatika
    thumbnail
    36
    pdf

    Vektor. Joone võrrand. Analüütiline geomeetria

    Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil, mida õpetatakse nii kitsas kui laias kursuses 10. klassi viimase teemana ja analüütiline geomeetria ruumis, mida õpetatakse vaid laias matemaatikas 12. klassis. Esimene kursus kannab pealkirja ,,Vektor tasandil. Joone võrrand" nii laias kui kitsas matemaatikas, kuid erinevused sisus on olulised. Kitsas matemaatikas peab kolmanda kursuse lõpetaja oskama selgitada vektori mõistet ja selle koordinaate; liitma ja lahutama vektoreid ning korrutama vektoreid arvuga nii geomeetriliselt kui ka koordinaatkujul; arvutama vektori pikkust; leidma vektorite skalaarkorrutist ning tundma vektorite ristseisu ja kollineaarsuse tunnuseid. Õpilane koostab sirge võrrandi, kui sirge on määratud punkti ja tõusuga, tõusu ja algordina

    Matemaatika
    thumbnail
    2
    doc

    Vektor tasandil ja sirge võrrandid

    X klassi matemaatika V perioodi arvestuse näidisküsimused ja -ülesanded Teemad: Valemid: 1. Vektor tasandil d= ( x2 - x1 ) 2 + ( y 2 - y1 ) 2 - Kahe punkti vaheline kaugus - Mis on vektor? Vektorite liigitus? a1 a 2 - Kollineaarsed vektorid a b , kui = b1 b2 AB = ( x 2 - x1 ; y 2 - y1 ) a = a12 + a 22 - Vektori koordinaadid ja pikkus - Nullvektor ja vastandvektor - Vektorite liitmine - Vektorite lahutamine

    Matemaatika




    Kommentaarid (1)

    sally006 profiilipilt
    sally006: Hea materjal
    19:23 25-04-2011



    Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun