Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Pouiseuille meetod - sarnased materjalid

sisehõõrdetegur, mõõtarv, voolamise, veaarvutused, antoine, chem, javascript, density, usaldatavusega, mahub, avada
thumbnail
3
pdf

Füüsika praktikum nr 14 - POISEUILLE' MEETOD

2. Kontrollige, et torus B poleks õhku. Õhu olemasolul tõusevad õhumullid reservuaari A, kui pigistada ühendatavat kummivoolikut. 3. Mõõtke katse algul veesamba kõrgus h1. Avage kummitoru sulgev näpits ja laske vett voolata anumasse D. Jälgige, et katse lõpus vedeliku nivoo jääks reservuaari A. 4. Sulgege näpits ja mõõtke veesamba kõrgus h2. 5. Väljavoolanud vedeliku ruumala V määrake mensuuriga. Tulemused kandke tabelisse. 6. Kuna vedeliku sisehõõrdetegur oleneb temperatuurist, siis tuleb mõõta ka väljavoolanud vee temperatuur. 7. Arvutage sisehõõrdetegur ja tema viga. Mõõdetav suurus Mõõtarv ja ühik Absoluutne viga Veesamba kõrgus h1 katse algul Veesamba kõrgus h2 katse lõpul Keskmine kõrgus Kapillaari pikkus l Väljavoolanud vee ruumala V Kapillaari raadius r Voolamise kestus t Vee temperatuur Vee sisehõõrdetegur

Füüsika
332 allalaadimist
thumbnail
3
docx

Poiseuille meetod

Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 14 TO: Poiseuille' meetod Töö eesmärk: Töövahendid: Vedeliku sisehõõrdeteguri Katseseade, mensuur või kaalud, määramine Poiseuille' mõõtejoonlaud, termomeeter, meetodil anum Skeem: 3.Katseandmete tabelid Mõõdetav suurus Mõõtarv ja -ühik Määramatus Veesamba kõrgus h1 katse algul Veesamba kõrgus h2 katse lõpul Keskmine kõrgus Kapillaari pikkus l Väljavoolanud vee ruumala V Kapillaari raadius r Voolamise kestus t Vee temperatuur Vee sisehõõrdetegur 4. Arvutused Sisehõõrdeteguri leidmine: Määramatuse leidmine: 5. Tulemused Vee sisehõõrdetegur (usaldatavusega 0,95)

Füüsika
138 allalaadimist
thumbnail
18
docx

Füüsika I praktikum nr14: POISEUILLE’ MEETOD

Poiseuille’ meetodil. termomeeter, anum. Skeem 1. Töö teoreetilised alused Vedeliku laminaarsel voolamisel on vedeliku kahe teineteisega paralleelse kihi vaheline sisehõõrdejõud arvutatav Newtoni sisehõõrdejõu valemi järgi: dv F  S dx , (1) kus η on sisehõõrdetegur (dünaamiline viskoossus), S - vaadeldavate kihtide pindala, dv dx - kiiruse gradient, so vedeliku voolukiiruse muutus pikkusühiku kohta, mis on võetud ristsuunas voolu suunaga ja pinnaga S . dv dx Kui valemis (1) võtta pindala S ja gradient ühikulised, siis F =η . Seega on sisehõõrdetegur arvuliselt võrdne jõuga, mis mõjub kahe teineteisega paralleelse

Füüsika
58 allalaadimist
thumbnail
8
docx

Poiseuille meetod Füüsika 1 Praktikum 14

Joonis 1. Töö teoreetilised alused Vedeliku laminaarsel voolamisel on vedeliku kahe teineteisega paralleelse kihi vaheline sisehõõrdejõud arvutatav Newtoni sisehõõrdejõu valemi järgi: dv 1. F=ηS , dx kus η on sisehõõrdetegur (dünaamiline viskoossus), S - vaadeldavate kihtide dv pindala, dx - kiiruse gradient, so vedeliku voolukiiruse muutus pikkusühiku kohta, mis on võetud ristsuunas voolu suunaga ja pinnaga S . dv Kui valemis (1) võtta pindala S ja gradient ühikulised, siis F=η . Seega on dx

Füüsika praktikum
172 allalaadimist
thumbnail
5
pdf

Füüsika praktikum nr. 14

Vee sisehõõrdeteguri määramine Katseseade, mensuur või kaalud, Poiseuille' meetodil. mõõtejoonlaud, termomeeter, anum. SKEEM Teoreetilised alused Vedeliku laminaarsel voolamisel on vedeliku kahe teineteisega paralleelse kihi vaheline sisehõõrdejõud arvutatav Newtoni sisehõõrdejõu valemi järgi: = , Kus on sisehõõrdetegur (dünaamiline viskoossus), ­ vaadeldavate kihtide pindala, / ­ kiiruse gradient, s.o. vedeliku voolukiiruse muutus pikkusühiku kohta, mis on võetud ristsuunas voolu suunaga ja pinnaga . Kui valemis (1) võtta pindala ja gradient / ühikulised, siis = . Seega on sisehõõrdetegur arvuliselt võrdne jõuga, mis mõjub kahe teineteisega paralleelse ühikulise pindalaga kihi vahel, kui kihtide kiiruste erinevus võetuna nende vahelise kauguse ühiku kohta, on võrdne ühikuga.

Füüsika
680 allalaadimist
thumbnail
1
doc

Praktikum 14 tabel - täitmata

Tabel 14.1 Vee sisehõõrdeteguri määramine Mõõdetav suurus Mõõtarv ja- ühik Absoluutne viga Veesamba kõrgus h1 katse algul Veesamba kõrgus h2 katse lõpul h + h2 Keskmine kõrgus 1 2 Kapillaari pikkus l Väljavoolanud vee ruumala V Kapillaari raadius r Voolamise kestus t Vee temperatuur Vee sisehõõrdetegur

Füüsika
93 allalaadimist
thumbnail
26
docx

Keemia praktikum nr1: Ideaalgaaside seadused

1. Sissejuhatus. Gaasilises olekus aine molekulid täidavad ühtlaselt kogu ruumi, molekulid on pidevas korrapäratus soojusliikumises. Molekulidevahelised kaugused on suured, mistõttu jõud nende vahel on väikesed ja jäetakse sageli arvestamata – ideaalgaas. Gaasiliste ainete mahtu väljendatakse tavaliselt kokkuleppelistel nn normaaltingimustel: temperatuur 273,15 K (0 °C) rõhk 101 325 Pa (1,0 atm; 760 mm Hg) Viimasel ajal soovitatakse kasutada gaaside mahu väljendamiseks ka nn standardtingimusi: temperatuur 273,15 K (0 °C) rõhk 100 000 Pa (0,987 atm; 750 mm Hg) Avogadro seadus. Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korral aatomeid). Kui normaaltingimustel on 1,0 Vm  22,4dm 3 / mol mooli gaasi maht ehk molaarruumala , siis standardtingimustel 101235

Keemia alused
3 allalaadimist
thumbnail
21
doc

Anorgaaniline keemia

Alari Allika pedl-2 092126 Anorgaanilise keemia I Laboritöö Töö nr. 2- Metalli aatommassi määramine, katse 1. metalli aatommassi määramine erisoojusmahtuvuse kaudu. Töö eesmärk: Metalli aatommassi määramine erisoojusmahtuvuse kaudu. Töövahendid: Kalorimeeter,soojusisolatsiooniga varustatud keeduklaas(200-300cm3 ),keeduklaas (100 cm3),termomeeter,kaal,pliit Töö Käik: Kaaluda 0,01 g täpsusega 30-50g raskune metallitükk, siduda niidi ots ja riputada 10 kuni 15 minutiks keevasse vette. Kaaluda kalorimeetri sisemine klaas, valada sellesse umbes 100 cm3 vett, kaaluda uuesti ja asetada klaas veega tagasi kalorimeetrisse. Mõõta kalorimeetri siseklaasis oleva vee temperatuur. Kiiresti võtta keevast veest metal ja asetada kalorimeetri siseklaasi. Kalorimeeter katta kaanega, segada termomeetriga ettevaatlikult vett ja märkida vee kõrgeim temperatuur. Katse andmed:

Anorgaaniline keemia
95 allalaadimist
thumbnail
9
docx

Anorgaaniline keemia I praktikum 2 protokoll

ANORGAANILINE KEEMIA I: LABORATOORSE TÖÖ PROTOKOLL Praktikum II Töö 5: Aine sulamis- ja keemistemperatuuri määramine Katse 1: Naatriumtiosulfaadi sulamistemperatuuri määramine Töö eesmärk: Naatriumtiosulfaadi sulamistemperatuuri määramine ning hinnata aine puhtust Kasutatud töövahendid: Õhukeseseinaline 5-8 mm läbimõõduga klaastoru (kapillaaride valmistamiseks), gaasipõleti, põleti kalasabaotsik, uhmer, paberleheke, klaastoru, termomeeter, keeduklaas, pliit, statiiv Kasutatud reaktiivid: naatriumtiosulfaat Töö käik: Õhukeseseinalisest 5 kuni 8 mm läbimõõduga klaastorust tõmmati kaks 50 mm pikkust ja 1 kuni 2 mm läbimõõduga kapillaari. Klaasi ühtlasemaks sulatamiseks varustati põleti kalasabaotsikuga. Klaasi sulatamine algas, kui gaasipõleti leek värvus naatriumsoolade lendumise tõttu kollaseks. Kapillaari üks ots sulatati kinni. Kapillaari täitmiseks puistati uhmris hästi peenestatud naatriumtiosulfaati paberlehekesele ja torgati ka

Anorgaaniline keemia
95 allalaadimist
thumbnail
20
docx

Aine sulamis- ja keemistemperatuuri määramine

ANORGAANILINE KEEMIA I: LABORATOORSE TÖÖ PROTOKOLL Robert Ginter - 142462MLGBII Praktikum II 1 TÖÖ 5: AINE SULAMIS- JA KEEMISTEMPERATUURI MÄÄRAMINE 1.1 KATSE 1: NAATRIUMTIOSULFAADI SULAMISTEMPERATUURI MÄÄRAMINE Töö eesmärk: Leida katse läbi naatriumtiosulfaadi sulamistemperatuur Töövahendid: Kaks klaas kapilaari, gaasipõleti, uhmer, naatriumtiosulfaat, termomeeter, keeduklaas, pliit Töö käik: Gaasipõleti kohal soojendati kaks klaastoru ja tõmmati kaks 50mm pikkust ja 1 kuni 2 mm pikkust kapillaari. Kapilaari ots suleti ja kapillaar täideti paari millimeetri naatriumtiosulfaadiga. Kapilaar kinnitati termomeetri külge ja asetati koos termomeetriga veega täidetud keeduklaasi, nii et vesi ei pääseks kapilaari sisse. Keeduklaasi soojendati pliidil, kuni oli märgata aine sulamist. Sulamistemperatuur pandi kirja ja korrati katset – see kord alustati vee temperatuuriga, mis oli 10 kraa

Anorgaaniline keemia ii
8 allalaadimist
thumbnail
16
docx

Adsorptsiooni uurimine lahuse ja õhu piirpinnal

TTÜ Materjaliteaduse instituut füüsikalise keemia õppetool Töö nr Töö pealkiri 1 Adsorptsiooni uurimine lahuse ja õhu piirpinnal Üliõpilase nimi ja eesnimi Õpperühm Reimann Liina KATB41 Töö teostamise Kontrollitud: Arvestatud: kuupäev: 18.02.2015 Joonis 1. Stalagmomeeter Töö eesmärk. Määrata pindaktiivse aine vesilahuse pindpinevus sõltuvalt lahuse kontsentratsioonist. Pindpinevuse isotermist leida adsorptsioni isoterm. Adsorptsiooni isotermist arvutada molekuli pindala ja pikkus monomolekulaarses kihis. Töövahendid. Stalagmomeeter (joonis 1), mōōtkolvid mahuga 25 ml, pipetid. Töö käik. Vastavalt juhendajalt saadud tööülesandele valmistatakse pindaktiivse aine vesilahused (25-50 ml igal kontsentratsioonil)

Füüsikaline ja kolloidkeemia
86 allalaadimist
thumbnail
4
docx

Keemia protokoll 2

Analüütlise keemia laboratoorse töö protokoll Mona- TheresaVõlma praktikum II B-1 102074 Töö 6 ­ HCl ja NaOH vahelise neutralisatsioonireaktsiooni soojusefekti määramine Töö eesmärk: Välja arvutada katseliste andmete põhjal neutralisatsiooni soojusefekt. Reaktiivid: HCl ­ vesinikkloriid (tugev hape) NaOH ­ naatriumhüdroksiid (tugev alus) Töö käik: Kuiva keeduklaasi mõõta 100cm3 1 M HCl lahust. Teise kuiva, soojusisolaatoriga varustatud 250 cm3 keeduklaasi mõõta 100 cm3 1 M NaOH lahust ja mõõta selle temperatuur. Valada kiiresti HCl NaOH lahusesse ja termomeetriga segades määrata lahuse kõrgeim temperatuur. Saadud 0,5 M NaCl lahuse tiheduse ja erisoojusmahtuvuse võib lugeda vastavate vee parameetritega: c= 4,18 J g-1 K-1 ja = 1 g cm-3. Saadud lahuse mass on seega 200g. Nende andmete põhjal on võimalik arvutada reaktsioonil eraldunud soojushulka q (J). Saadud an

Anorgaaniline keemia
96 allalaadimist
thumbnail
38
xlsx

KK 1 Adsorptsiooni uurimine lahuse ja õhu piirpinnal

TTÜ Materjaliteaduse Instituut Füüsikalise keemia õppetool Töö nr KK1 Adsorptsiooni uurimine lahuse ja õhu piirpinnal terjaliteaduse Instituut kalise keemia õppetool urimine lahuse ja õhu piirpinnal Töö eesmärk Uurida adsorptsiooni piirpinnal lahus/õhk. Valmistada propanooli vesilahus kontse järjestikust lahjendust 1:2. Mõõta lahuste pindpinevused stalagmomeetri abil. Teoreetilised alused Stalagmomeetriga tilkade lugemise meetod põhineb eeldusel, et tilk rebitakse lahti kapi võrdseks pindpinevusjõuga F. Esimeses lähenduses võib seega arvestada, et �= 2���, kus raadius ja σ on pindpinevus. Täpsemal σ määramisel tuleb arvestada, et tilga katkemine toimub tilga kaelas, mille ra Kui stalagmomeetri ülemise ja alumise märgi vaheline ruumala on V ja tilkade arv selles tilga kaal: �=�/� ��, ku

Füüsikaline ja kolloidkeemia
25 allalaadimist
thumbnail
7
docx

Adsorptsiooni uurimine lahuse ja õhu piirpinnal

Materjaliteaduse instituut TTÜ füüsikalise keemia õppetool Töö nr 1k Adsorptsiooni uurimine lahuse ja õhu piirpinnal Üliõpilase nimi: Õpperühm: KATB41 Töö teostamise Kontrollitud: Arvestatud: kuupäev: 19.02.2014 Joonis 1. Stalagmomeeter Töö eesmärk Määrata pindaktiivse aine vesilahuse pindpidevus sõltuvalt lahuse kontsentratsioonist. Pindpidevuse isotermist leida adsorptsiooni isoterm. Adsorptsiooni isotermist arvutada pindala ja pikkus monomolekulaarses kihis. Töövahendid Stalagmomeeter (joonis 1), mtkolvid mahuga 25(50) ml, pipetid Töö käik ja teoreetilised alused Vastavalt juhendajalt saadud tööülesandele valmistasin pindaktiivse aine vesilahused. Pindpidevuse määrasin stalagmomeetriga tilkade lugemise meetodil. Meetod põhineb eeldusel, et tilk rebitakse lahti kapillaari küljest, kui tilga k

Füüsikaline ja Kolloidkeemia
55 allalaadimist
thumbnail
10
docx

Ideaalgaaside seadused

TTÜ keemiainstituut Anorgaanilise keemia õppetool YKI0020 Keemia alused Laboratoorne Töö pealkiri: Ideaalgaaside seadused töö nr. 1 Töö teostaja: Õpperühm: Õppejõud: Töö teostatud: Protokoll esitatud: Protokoll arvestatud: Laboratoorne töö 1 Ideaalgaaside seadused Sissejuhatus Gaasilises olekus aine molekulid täidavad ühtlaselt kogu ruumi, molekulid on pidevas korrapäratus soojusliikumises. Molekulidevahelised kaugused on suured, mistõttu jõud nende vahel on väikesed ja jäetakse sageli arvestamata ­ ideaalgaas. Erinevalt tahketest ainetest ja vedelikest sõltub gaaside maht oluliselt temperatuurist ning rõhust. Gaasiliste ainete mahtu väljendatakse tavaliselt kokkuleppelistel

Keemia
11 allalaadimist
thumbnail
14
docx

Ideaalgaaside seadused

SISSEJUHATUS Gaasilises olekus aine molekulid täidavad ühtlaselt kogu ruumi, molekulid on pidevas korrapäratus soojusliikumises. Molekulidevahelised kaugused on suured, mistõttu jõud nende vahel on väikesed ja jäetakse sageli arvestamata – ideaalgaas. Erinevalt tahketest ainetest ja vedelikest sõltub gaaside maht oluliselt temperatuurist ning rõhust. Gaasiliste ainete mahtu väljendatakse tavaliselt kokkuleppelistel nn normaaltingimustel: temperatuur 273,15 K (0 °C) rõhk 101 325 Pa (0,987 atm;750 mmHg) Charles'i seadus Konstantsel rõhul on kindla koguse gaasi maht võrdelises sõltuvuses temperatuuriga. PVT 0 V0  P0T  kus V0 on gaasi maht normaal- või standardtingimustel, P0 normaal- või standardtingimustele vastav rõhk (sõltuvalt valitud ühikutest), T0 normaal- ja standardtingimustele vastav temperatuur kelvinites (mõlemal juhul 273 K),

Keemia alused
9 allalaadimist
thumbnail
14
odt

Süsinikdioksiidi molaarmassi määramine

Keemia praktikum.Ideaalgaaside seadused. Eksperimentaalne töö nr 1: Süsinikdioksiidi molaarmassi määramine Töö eesmärk Gaaside saamine laboratooriumis, seosed gaasiliste ainete mahu, temperatuuri ja rõhu vahel, gaasiliste ainete molaarmassi leidmine. Antud laboratoorses töös määratakse süsinikdioksiidi molaarmassi. Sissejuhatus Erinevalt tahketest ainetest ja vedelikest sõltub gaaside maht oluliselt temperatuurist ning rõhust. Gaasiliste ainete mahtu väljendatakse tavaliselt kokkuleppelistel nn normaaltingimustel: temperatuur 273,15 K (0 °C) rõhk 101 325 Pa (1 atm; 760 mm Hg) Avogadro seadus. Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korral aatomeid). Normaaltingimustel on 1,0 mooli gaasi maht ehk molaarruumala Vm =22,4 dm3/mol. Boyle'i seadus. Konstantsel temperatuuril on ki

Keemia alused
12 allalaadimist
thumbnail
13
doc

Soojusfüüsika

molekulid pidevalt ja kaootiliselt, põrkudes teiste molekulidega. Kõigil mainitud juhtudel on molekulide liikumiskiirused tavamõistes suured, suurusjärgus 10 2... 103 m/s. Õhus toatemperatuuril ja normaalrõhul toimub ühe molekuliga ca 1010 põrget ja ilma põrkumata saab molekul liikuda keskmiselt 0,1 ... 0,01 mikromeetrit (10-7 m). Temperatuurist olenevad paljud füüsikalised suurused: ruumala, rõhk, tihedus, pindpinevustegur, sisehõõrdetegur , eritakistus jne. 1 Temperatuuride summal pole füüsikalist mõtet , aga temperatuuride vahel ehk temperatuuri muudul on, see määrab ära näiteks soojusvahetusel üleantava soojushulga. Temperatuuri muut t näitab, kui palju on keha temperatuur muutunud ja see leitakse seosest t = tl ­ ta , kus tl on keha lõpptemperatuur ja ta keha algtemperatuur.

Füüsika
27 allalaadimist
thumbnail
16
docx

Ideaalgaaside seadused

Ideaalgaaside seadused 1)Metalli massi määramine reaktsioonis eralduva gaasi mahu järgi Töö ülesanne ja eesmärk: Gaasiliste ainete mahu mõõtmine, gaaside segud ja gaasi osarõhk, arvutused gaasidega reaktsioonivõrrandi põhjal. Sissejuhatus: Ideaalgaas- Molekulid on pidevas korrapäratus soojusliikumises. Molekulidevahelised kaugused on suured, mistõttu jõud nende vahel väga väikesed ja neid tavaliselt ei arvestata. Gaaside maht sõltub temperatuurist ning rõhust. Gaasiliste ainete mahtu väljendatakse tavaliselt normaaltingimustel: Temperatuur 273,15 K (0 °C) Rõhk 101 325 Pa (1,0 atm; 760 mm Hg) Gaaside mahu väljendamiseks kasutatakse ka nn standardtingimusi: Temperatuur 273,15 K (0 °C) Rõhk 100 000 Pa (0,987 atm; 750 mm Hg) Avogadro seadus: Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korral aatomeid). Kui normaaltingimustel on 1,0 mooli gaasi maht ehk molaarruumala Vm = 22,4

Eesti keel
1 allalaadimist
thumbnail
8
docx

Ideaalgaaside seadused

Ideaalgaaside seadused 1)Metalli massi määramine reaktsioonis eralduva gaasi mahu järgi Töö ülesanne ja eesmärk: Gaasiliste ainete mahu mõõtmine, gaaside segud ja gaasi osarõhk, arvutused gaasidega reaktsioonivõrrandi põhjal. Sissejuhatus: Ideaalgaas- Molekulid on pidevas korrapäratus soojusliikumises. Molekulidevahelised kaugused on suured, mistõttu jõud nende vahel väga väikesed ja neid tavaliselt ei arvestata. Gaaside maht sõltub temperatuurist ning rõhust. Gaasiliste ainete mahtu väljendatakse tavaliselt normaaltingimustel: Temperatuur 273,15 K (0 °C) Rõhk 101 325 Pa (1,0 atm; 760 mm Hg) Gaaside mahu väljendamiseks kasutatakse ka nn standardtingimusi: Temperatuur 273,15 K (0 °C) Rõhk 100 000 Pa (0,987 atm; 750 mm Hg) Avogadro seadus: Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korral aatomeid). Kui normaaltingimustel on 1,0 mooli gaasi maht ehk molaarruumala Vm = 22,4

Keemia
4 allalaadimist
thumbnail
5
doc

Prax: CO2 molaarmassi määramine, metalli massi määramine

1) Süsinikdioksiidi molaarmassi määramine Töö ülesanne ja eesmärk: Seosed gaasiliste ainete mahu, temperatuuri ja rõhu vahel, gaasiliste ainete molaarmassi leidmine. Sissejuhatus: Ideaalgaasis on molekulid pidevas korrapäratus soojusliikumises ning molekulidevahelised jõud on olematud. Gaaside maht sõltub oluliselt temperatuurist ning rõhust. Gaasiliste ainete mahtu väljendatakse tavaliselt normaaltingimustel: temperatuur 273,15 K (0 °C) rõhk 101 325 Pa (1,0 atm; 760 mm/Hg) Gaaside mahu väljendamiseks võib kasutada ka nn standardtingimusi: temperatuur 273,15 K (0 °C) rõhk 100 000 Pa (0,987 atm; 750 mm Hg) Avogadro seadus: Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korral aatomeid). Kui normaaltingimustel on 1,0 mooli gaasi maht ehk molaarruumala Vm = 22,4 dm3/mol, siis standardtingimustel Vm = 22,7 dm3/mol. Põhilised ideaalgaaside seadused: Boyle'i seadus: Konstantsel temperatuuri

Keemia alused
70 allalaadimist
thumbnail
31
docx

KESKKONNAFÜÜSIKA ALUSED

o Sisehõõrde tekkemehhanismid: Tõmbejõud molekulide vahel (peamiselt vedelike puhul). Molekulide difusioon (oluline gaaside puhul). Turbulents (nii vedelike kui gaaside puhul), levinum suuema ulatusega liikumiste korral. · Newtoni sisehõõrde valem, njuutonlikud ja mittenjuutonlikud vedelikud. o f = S , - viskoossuskoefitsent e dünaamiline sisehõõrdetegur [Pa s], - kiiruse muutumine vertikaalis, S pindala. o Njuutonlikud vedelikud ­ vedelikud, millel sisehõõrdetegur on antud temperatuuril konstantne ja ei sõltu voolukiirusest. Nt vesi, bensiin, petrooleum, õhk. o Mittenjuutonlikud vedelikud ­ vedelikud, millel sisehõõrdetegur antud temperatuuril sõltub voolamiskiirusest. Nt veri (tervikuna). · Hagen-Poiseuille valem. o Valem käsitleb viskoosse vedeliku koguvoolu torudes

Keskkonafüüsika
38 allalaadimist
thumbnail
5
docx

KK 1, Adsorptsiooni määramine lahuse ja õhu piirpinnal

TTÜ Materjaliteaduse instituut Füüsikalise keemia õppetool Töö nr. KK1 Töö pealkiri: Adsorptsiooni uurimine lahuse ja õhu piirpinnal Üliõpilase nimi ja eesnimi : Õpperühm: Töö teostamise Kontrollitud: Arvestatud: kuupäev: Töö ülesanne Ülesandeks on määrata pindaktiivse aine vesilahuse pindpinevus sõltuvalt lahuse kontsentratsioonist. Pindpinevuse isotermist tuleb leida adsorptsiooni isoterm ning adsorptsiooni isotermist omakorda tuleb arvutada molekuli pindala ja pikkus monomolekulaarses kihis. Minul tuli valmistada butanooli vesilahus kontsentratsiooniga 0,4 M ja sellest 5 järjestikust lahjendust 1:2, seejäre mõõta lahuste pindpinevused stalagmomeetri abil. Katse käik Valmistasin butanooli 0,4 M vesilahused (pindaktiivne aine), igal kontsentratsioonil 25-50 mL. Selleks tegin kontsentratsioonide

Füüsikaline ja kolloidkeemia
211 allalaadimist
thumbnail
18
doc

Laboratoorne töö 1- ideaalgaaside seadused (Keemia alused)

Laboratoorne töö 1 Ideaalgaaside seadused Sissejuhatus Gaasilises olekus aine moleklid täidavad ühtlaselt kogu ruumi, molekulid on pidevas korrapäratus soojusliikumises. Molekulidevahelised kaugused on suured, mistõttu jõud nende vahel on väikesed ja jäetakse sageli arvestamata- ideaalgaas. Gaasiliste ainete mahtu mahtu väljendatakse tavaliselt kokkuleppeliselt nn normaaltingimustel:  Temperatuur 273,15 K (0 oC)  Rõhk 101 325 Pa (1,0 atm; 760 mm Hg) Aga gaasiliste ainete mahtu võib väljendada ka standardtingimustel:  Temperatuur 273,15 K (0 oC)  Rõhk 100 000 Pa (0,987 atm; 750 mm Hg) Boyle’i – Marionette’i seadus Konstantsel temperatuuril on kindla koguse gaasi maht (V) pöördvõrdelises sõltuvuses rõhuga (P). P1 V2 ── = ── P V = const P2 V1 Gay – Lussac’i seadus Konstantsel rõhul kindla koguse gaasi maht on võrdelises sõltuvuses temperatuuriga. V V1

Keemia alused
6 allalaadimist
thumbnail
15
docx

Hüdrodünaamika

järgmiste empiiriliste sõltuvuste abil kus , pkt ­ vastavalt hõõrderõhukadu ja kohttakistuserõhukadu, Pa, ­ hõõrdekoefitsent, l- toru pikkus, m, d- toru diameeter, m, - vedeliku tihedus, kg/m3, w-vedeliku voo keskmine kiirus, m/s, - kohttakistuskoefitsent. Vedeliku voo keskmine kiirus määratakse järgmiselt: kus V- mahtkulu, m3/s, A- vedeliku voo ristlõige m2. Hõõrdekoefitsent ja kohttakistuskoefitsendid ei ole konstantsed suurused, nad sõltuvad vedeliku voolamise kiirusest, vedeliku tihedusest ja viskoossusest, samuti toru diameetrist ning toru seinte karedusest, mis on saadud eksperimentaalandmete üldistamisel kasutades sarnasusteooriat. Vedeliku voo ühtlast liikuist kirjeldab võrrand: kus Eu on Euleri arv, mis väljendab rõhu- ja inertsijõudude suhet: ning Re on Reynoldsi arv, mis väljendab inertsi- ja viskoossusjõudude suhet: 1, 2 on geomeetrilise sarnasuse kriteeriumid. Laminaarsel voomalisel (Re < 2300) ei sõltu torustiku karedusest

Gaaside ja vedelike voolamine
150 allalaadimist
thumbnail
5
docx

Süsinikdioksiidi molaarmassi määramine.

Eksperimentaalne töö 1 Süsinikdioksiidi molaarmassi määramine. Töö eesmärk Gaaside saamine laboratooriumis, seosed gaasiliste ainete mahu, temperatuuri ja rõhu vahel, gaasiliste ainete molaarmassi leidmine. Kasutatavad ained Süsihappegaas (CO) Töövahendid Kippi aparaat või CO2 balloon, 300 ml korgiga varustatud seisukolb, tehnilised kaalud, 250 ml mõõtesilinder, termomeeter, baromeeter. Sissejuhatus Erinevalt tahketest ainetest ja vedelikest sõltub gaaside maht oluliselt temperatuurist ning rõhust. Gaasiliste ainete mahtu väljendatakse tavaliselt kokkuleppelistel nn normaaltingimustel: temperatuur 273,15 K (0 °C) rõhk 101 325 Pa (1,0 atm; 760 mm Hg) Avogadro seadus. Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korral aatomeid). Ideaalgaaside võrrandites tuleb kasutada temperatuuriühikuna kelvinit, mitte aga Celsiuse kraade.

Keemia alused
32 allalaadimist
thumbnail
7
docx

Süsinikdioksiidi molaarmassi määramine

LABORATOORNE TÖÖ 1 Süsinikdioksiidi molaarmassi määramine Töö eesmärk Gaaside saamine laboratooriumis, seosed gaasiliste ainete mahu, temperatuuri ja rõhu vahel, gaasiliste ainete molaarmassi leidmine. Sissejuhatus Gaasilises olekus aine molekulid täidavad ühtlaselt kogu ruumi, molekulid on pidevas korrapäratus soojusliikumises. Molekulidevahelised kaugused on suured, mistõttu jõud nende vahel on väikesed ja jäetakse sageli arvestamata ­ ideaalgaas. Erinevalt tahketest ainetest ja vedelikest sõltub gaaside maht oluliselt temperatuurist ning rõhust. Gaasiliste ainete mahtu väljendatakse tavaliselt kokkuleppelistel nn normaaltingimustel: Temperatuur 273,15 K (0 °C) Rõhk 101 325 Pa (1,0 atm; 760 mm Hg) Viimasel ajal soovitatakse kasutada gaaside mahu väljendamiseks ka nn standardtingimusi: Temperatuur 273,15 K (0 °C) Rõhk 100 000 Pa (0,987 atm; 750

Keemia alused
24 allalaadimist
thumbnail
8
odt

Süsinikdioksiidi molaarmassi määramine

Eksperimentaalne töö 1 Süsinikdioksiidi molaarmassi määramine 1.Töö ülesanne ja eesmärk Gaaside saamine laboratooriumis, seosed gaasiliste ainete mahu, temperatuuri ja rõhu vahel, gaasiliste ainete molaarmassi leidmine. 2.Sissejuhatus Molekulidevahelised kaugused on suured, mistõttu jõud nende vahel on väikesed ja jäetakse sageli arvestamata ­ Ideaalgaas. Gaaside maht sõltub oluliselt temperatuurist ning rõhust. Gaasiliste ainete mahtu väljendatakse tavaliselt kokkuleppelistel nn normaaltingimustel: temperatuur 273,15 K (0 °C) rõhk 101 325 Pa (1,0 atm; 760 mm Hg) Avogadro seadus. Kõikide gaaside võrdsed ruumalad sisaldavad ühesugusel temperatuuril ja rõhul võrdse arvu molekule (või väärisgaaside korral aatomeid). Normaaltingimustel on 1,0 mooli gaasi maht ehk molaarruumala Vm = 22,4 dm3/mol. Boyle'i seadus Konstantsel temperatuuril on kindla koguse gaasi maht (V) pöördvõrdelises sõltuvuses rõhuga (P). PV = const Charles'i seadus Konstantse

Keemia alused
15 allalaadimist
thumbnail
5
pdf

Adsorptsiooni uurimine lahuse ja õhu piirpinnal

Materjaliteaduse instituut TTÜ Füüsikalise keemia õppetool Töö 1 Töö pealkiri ADSORPTSIOONI UURIMINE LAHUSE JA ÕHU PIIRPINNAL nr (KK) Üliõpilane MIHKEL HEINMAA Õpperühm YAGB41 Töö teostatud 21/02/2011 Arvestatud Stalagmomeeter TÖÖ EESMÄRK Määrata pindaktiivse aine vesilahuse pindpinevus sõltuvalt lahuse kontsentratsioonist. Pindpinevuse isotermist leida adsorptsioni isoterm. Adsorptsiooni isotermist arvutada molekuli pindala ja pikkus monomolekulaarses kihis. TÖÖVAHENDID Stalagmomeeter, mõõtekolvid mahuga 50 ml, pipetid. TÖÖ KÄIK Vastavalt juhendajalt saadud tööülesandele valmistatakse pindaktiivse aine vesilahused (25-50 ml igal kontsentratsioonil). Teha kontsentratsioonide arvutus ja esitada see juhendajale. Pindpinevus määratakse stalagmomeetriga tilkade lugemise meetodil. Meetod p÷hineb eeldusel, et tilk rebi

Füüsikalise keemia praktikum
309 allalaadimist
thumbnail
18
docx

Keemia alused: süsinikdioksiidi molaarmassi määramine

Eksperimentaalne töö 1 Süsinikdioksiidi molaarmassi määramine Töö ülesanne ja eesmärgid Töö ülesandeks on laboratooriumis gaaside saamine. Samuti õppida tundma seoseid gaasiliste ainete mahu, temperatuuri ning rõhu vahel. Eesmärk on leida gaasilise aine molaarmass, kasutades eelmainitud seoseid gaasiliste ainete omaduste vahel. Sissejuhatus Õhu mahu arvutamiseks (CO2) kolvis normaaltingimusel (V0) kasutatakse valemit: 0 PV T 0 V = 0 PT Gaaside tiheduse valem: g M gaas [ ] 0 mol ρ= 3 dm 22,4 [ ] mol Õhu mass: mõhk = ρ0 õhk ⋅ V0 Suhteline tihedus: m1 D= m2 Katse süstemaatiline viga, kus 44 g/mol on CO2 tegelik molaarmass: g E A =M −44,0 mol Katse suhteline viga: ¿ M CO −44,0∨∙ 100 ES

Keemia alused
7 allalaadimist
thumbnail
6
rtf

Keemia aluste 1. praktikumi protokoll - Süsinikdioksiidi molaarmassi määramine

Eksperimentaalne töö nr. 1 Süsinikdioksiidi molaarmassi määramine Töö eesmärk: Gaaside saamine laboratooriumis, seosed gaasiliste ainete mahu, temperatuuri ja rõhu vahel, gaasiliste ainete molaarmassi leidmine. Töövahendid: CO2 balloon, 300 ml korgiga varustatud seisukolb, tehnilised kaalud, 250 ml mõõtesilinder, termomeeter, baromeeter. Kasutatud ained: CO2, õhk, vesi Töö käik: Kaaluda tehnilisel kaalul korgiga varustatud ~300 ml kuiv kolb(mass m 1). Kolvi kaelale teha viltpliiatsiga märge korgi alumise serva kohale. Balloonist juhtida 7-8 minuti vältel kolbi süsinikdioksiidi. Tulebi jälgida, et vooliku ots ulatuks peaaegu kolvi põhjani, aga ei oleks tihedalt vastu põhja. Muidu võib juhtuda, et kogu CO2 väljub voolikukimbu teistest harudest. Seejärel tuleb kolb sulgeda kiiresti korgiga ja kaaluda uuesti samal kaalul. Et katse tulemused oleksid täpsed juhtida kolbi 1-2 minuti vältel täiendavalt süsinikdioksiidi, kolb sulgeda korgiga ning kaaluda

Keemia alused
80 allalaadimist
thumbnail
14
docx

Süsinikdioksiidi molaarmassi määramine

Eksperimentaalne töö nr. 1 Süsinikdioksiidi molaarmassi määramine Töö eesmärk: Gaaside saamine laboratooriumis, seosed gaasiliste ainete mahu, temperatuuri ja rõhu vahel, gaasiliste ainete molaarmassi leidmine. Töövahendid: CO2 balloon, 300 ml korgiga varustatud seisukolb, tehnilised kaalud, 250 ml mõõtesilinder, termomeeter, baromeeter. Kasutatud ained: CO2, õhk, vesi Töö käik: Kaaluda tehnilistel kaaludel korgiga varustatud ~300 ml kuiv kolb (mass m1). Kolvi kaelale teha viltpliiatsiga märge korgi alumise serva kohale. Juhtida balloonist 7...8 minuti vältel kolbi süsinikdioksiidi. Jälgida, et vooliku ots ulatuks peaaegu kolvi põhjani, aga ei oleks tihedalt vastu põhja. Muidu võib juhtuda, et kogu CO 2 väljub voolikukimbu teistest harudest. Kolb sulgeda kiiresti korgiga ja kaaluda uuesti. Juhtida kolbi 1...2 minuti vältel täiendavalt süsinikdioksiidi, sulgeda kolb korgiga ning kaaluda veelkord. Kolvi täitmist jätkata konstantse massi (mass m2) sa

Keemia alused
2 allalaadimist
thumbnail
18
docx

Keemia aluste Protokoll 1

TTÜ keemiainstituut Anorgaanilise keemia õppetool YKI0020 Keemia alused Laboratoorne töö nr. Töö pealkiri: Õpperühm: Töö teostaja: Õppejõud: Töö teostatud: Protokoll esitatud: Protokoll arvestatud: LABORATOORNE TÖÖ 1 Ideaalgaaside seadused Gaasilises olekus aine molekulid täidavad ühtlaselt kogu ruumi, molekulid on pidevas korrapäratus soojusliikumises. Molekulidevahelised kaugused on suured, mistõttu jõud nende vahel on väikesed ja jäetakse sageli arvestamata ­ ideaalgaas. Erinevalt tahketest ainetest ja vedelikest sõltub gaaside maht oluliselt temperatuurist ning rõhust. Gaasiliste ainete mahtu väljendatakse tavaliselt kokkuleppelistel nn normaaltingimustel: temperatuut 273,15 K (0 °C) rõhk 101 325 Pa (1

Keemia alused
16 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun