Katse n b , nm 2 nr. 1. 3 240 598 29,17 850,89 2. 4 165 619 8,17 66,75 3. 5 125 635 -7,83 61,31 4. 6 98 661 - 1144,47 33,83 5. 7 90 613 14,17 200,79 6. 8 75 637 -9,83 96,63 627,1 2420,84 7 a=1230 mm D=1,2 mm A-tüüpi mõõtemääramatus: n 2 i Δ = t n 1,β i=1 n n 1 2420,84 Δ = 2,6 23,36nm 6
FÜÜSIKA II. MÕISTEID JA SEADUSI I. Elektrostaatika Elektromagnetiline vastasmõju on seotud elektrilaenguga, mida on kahte liiki (+ ja -), mille algebraline summa elektriliselt isoleeritud süsteemis ei muutu ja mis saab olla vaid elementaarlaengu ( e = 1.6 10 -19 C ) täisarvkordne; elektrilaeng on alati seotud laengukandjaga ja on relativistlikult invariantne suurus. Liikumatute punktlaengute q1 ja r r q1 q 2 r q 2 vastastikune mõju on määratud Coulombi seadusega: F = k , kus r2 r 1 1 r k SI = , elektriline konstant 0 = , r - ühe laengu kohavektor teise suhtes, 4 0 4 9 10 9 r laengut
!"# $ %% & '!()*&+',-,'!$,&&)", ($&''! %% ./ 0 %% 1 1 2 0 432511 13 0 .. Katseandmete tabelid Fraunhoferi difraktsioon pilu korral. Kasutatavad mõõteriistad: ............................................................................................................... ............................................................................................................... Miinimumi (või Nr. maksimumi) järk k 2l I
Valguse difraktsioon. Valguse difraktsioon on nähtus, mis laseb otsustada, et valgus on laine. Valguse difraktsiooniks nimetame valguslainete paindumist tõkete taha. Difraktsiooninähtus esineb ka mehaaniliste lainete korral, näiteks merelained või häälelained, ka need painduvad tõkete taha.Kui paigutada laine levimise teele ette takistus, avaga ekraan, siis on võimalikud kaks juhtu. Laine, mis pääseb avast läbi tekitab laine ainult ava taga ja ekraanil näeme ava suurust valguslaiku
Valgus on samaaegselt osake ja laine, mille lainepikkus on vahemikus 380...760 nanomeetrit. Valguse dualistlik käsitlus - Valguse dualism seisneb valgusnähtuste kaheses seletamises Mõningaid nähtusi saab seletada ainult valguse laineteooriaga, teisi ainult valguse kvantteooriaga, kolmandaid aga nii üht- kui teistviisi. Atomistlik printsiip - et loodus ei ole lõputult ühel ja samal viisil osadeks jagatav. Dualistliku käsitlusega nii seotud, et kuna tänaseks kätte saadavad osakesed, millest on moodustunud aatomid, on prooton, neutron ja elektron. Kuid arvestades energia ja massi jäävuse seadust võib piisava koguse energia koondamisel väga väikesesse ruumi piirkonda tekitada uusi massiga osakesi - mesoneid, neutriinosid. Seega ei ole see lõputult osadeks jaotamine üheselt mõistetav. Elektrivälja ja magnetvälja muutumine valguslaine korral- muutuvad sinusoidselt. Neid vaadeltakse koos, sest elektrivälja muutumine põhjustab magnetvälja muutumise. Valgusla
1. Kirjelda valguslainet. - Valgus on elektromagnetlaine (elektri + magnetväli) - Eetrit pole vaja - Valguskiirusel - Iseloomustavad suurused: lainepikkus, sagedus, periood ja kiirus - Muutuv elektriväli tekitab muutuva magnetvälja, muutuv magnetväli tekitab omakorda muutuvad elektrivälja 2. Mida nimetatakse valguse difraktsiooniks? Nähtust, kus lained kanduvad tõkete taha. Esineb ka siis, kui lained läbivad tõketes olevaid avasid. 3. Miks ei ole difraktsioon jälgitav suurte mõõtmete korral? Millal on difraktsioon jälgitav? Selleks, et jälgida valguslainete difraktsiooni, ei või avad (või ka tõkked) olla 0,001 mm'st (valguse lainepikkus on väiksem kui 0,001 mm) palju suuremad. Hästi jälgitav difraktsioon ilmneb siis, kui ava laius on võrdne 2-5 lainepikkusega. 4. Kirjelda tüüpilist difraktsioonipilti. Pilt tekib triibulistest mustadest triipudest ja valgetest triipudest. Need on põhjustatud
Koherentne laine tekib, kui liituvatel lainetel on ühesugune lainepikkus ja sagedus, samuti peab nende faaside vahe olema muutumatu. Liituvate lainete allikad võnguvad täpselt ühesuguselt. Koherentsete lainete kohtumisel tekib interferents, kus lained tugevdavad või nõrgendavad üksteist. See, kui suur on laineallikate faaside vahe, pole oluline, kuid tähtis on, et see oleks konstantne. Vastasel juhul interferentsi ei teki. 4. Difraktsioon, selle avaldumine ja rakendused Difraktsiooniks (ladina sõnast diffractus 'murdunud') nimetatakse lainete kõrvalekaldumist sirgjoonelisest levimisteest ning nende paindumist tõkete taha. Difraktsiooni võib näha kas või mere ääres, kus sadamakai varju või kus suure kivilahmaka taha lained ei levi, kuid väiksemate kivide taga lained koonduvad veidi, veel väiksemate taga aga koonduvad juba tugevasti. Tõkked peavad olema samas suurusjärgus võngete lainepikkusega, et
Ultravalgust (valgusest väiksema lainepikkusega elektromagnetlaineid) kasutatakse astronoomias, valgustamiseks, plasmatoodetes, fotokeemias, bioloogias. Mida kõrgem on keha temperatuur, seda rohkem hakkab see kiirgama. Difraktsiooniks nimetatakse nähtust, kus lained painduvad tõkete taha. Valguslainete puhul toimub see vaid siis, kui avad või tõkked ei ole valguse lainepikkusest (0,001 nm) palju suuremad. Vastasel juhul on difraktsioon tühine ja valguse levimist võib pidada sirgjooneliseks. Varju piirkonnaks nimetatakse seda osa, kuhu sirgjooneliselt leviv valgus ei satu. Huygensi printsiip: Iga ruumipunkt, kuhu laine jõuab on uueks laineallikaks, kust kiirgub elementaarlaine. Fresneli printsiip: Elementaarlained liituvad ja liitumise tulemus on määratud sellega millises võnkeolekus e. faasis jõuavad lained ruumipunkti, kus liitumist jälgitakse
Kõik kommentaarid