tõmbejõud. Nad on maailma tugevaimad jõud massiosakese kohta. Tänu tuumajõududele on tuuma lõhustamine väga raske. Seoseenergia nim energiat, mis on vajalik, et lõhustada tuum täielikult ükiskuteks osadeks. Kuna tuuma jõud on väga suured, siis on see energia massiühiku kohta tohutult suur. Kuna peab kehtima energiajäävuse seadus, siis peaks vastupidises protsessis osakestest moodustub (tuum)hoopis eralduma energia. Reaalsuses see energiaga eraldub. Massidefekt - Osutub, et tuuma moodustavate osakeste masside summa on alati suurem kui osakestest moodustunud tuumamass. Seda massi vahet nim massidefektiks. Eriseosenergia see on seosenergia ühe massiühiku kohta. Graafikult näeme, et kõige suurema eriseosenergiaga on raua ümbruses olevad elemendid. St, nad on kõige püsivamad elemendid. Tabeli lõpuelementide vastav energia on aga väiksem, see tõttu on nad ebapüsivad ja lagunevad tabeli keskosa elementideks, mille vastav energia on suurem
Põhjuseks: istoopide olemasolu. Isotoobiks nim antud elemendi lisa, mis erineb antud elemendist , mis erineb antud elemendist neutronite arvu poolest. Seetõttu tulevadki aatommassid komadega arvud. Tavaliselt isotoope on väga vähe antud elemendil ja väljaarvatud kloor - 35,5 ( pool on 35ga / pool on 36ga) Vesinik - H jrk. nr. 1, am. 1, st temas 1 prooton (põhiaine) Lisaks 2 isotoopi: 1) deuteerium jrk. nr. 1, a.m. 2 , st 1 prooton ja 1 neutron - teda on u 1/4500 vesiniku aatomitest. Tema ühedit hapnikuga nim raskeks veeks. 2) triituim jrk. nr. 1, a.m. 3( 1 prooton ja 2 neutronit) - tema on beeta radioaktiivne ja poolestusaeg on u 12 aastat. Uraan - jrk. 92, a.m. 238 (92 prootonit ja 146 neutronit) Isotoop U(jrk.nr. 92 üleval, a.m.235 all) ( 92 prootonit ja 143 neutronit) see istoop on põhielement tuumapommis ning tuumareaktoris. Teda on u 1/140dik osa looduslikust uraanist.
miljon korda rohkem kui sama hulga aine põlemisel, sest tuumajõud on palju tugevamad kui elektrone siduvad elektrilised jõud. Mõne isotoobi tuum lõhustub iga kord, kui kohtub neutroniga, st ta ei vaja selleks neutroniga kaasa toodud lisaenergiat. Sel juhul võivad ka lõhustumisel tekkinud neutronid uusi lõhustumisi esile kutsuda. Sellist nähtust, kus reaktsioon põhjustab sellesama reaktsiooni jätkumist naaberaatomitel, nim ahelreaktsiooniks. Keemiliste reaktsioonide puhul oleks ahelreaktsioon näiteks lõkke põlemine, sest põlemisel tekkinud soojus süütab üha uued kütusekogused. Veel parem näide on püssirohu plahvatamine, sest seda ei piira õhu juurdevoolu vajadus ja reaktsioon levib iseseisvalt suure kiirusega. Kuna tuuma lõhustumisel tekib mitu uut neutronit, siis võib ahelreaktsiooni käigus samaaegselt lõhustuvate tuumade arv järjest kasvada. Tekkigu näiteks ühe tuuma lõhustumisel
poolest. Tuumafüüsikas kasutatakse isotoopide jaoks tähistust 42He, kus alumine indeks näitab tuumalaengut (prootonite arvu, järjekorranumbrit perioodilisuse tabelis) ja ülemine number näitab tuumas sisalduvate prootonite ja neutronite koguarvu. Vesinikul kolm isotoopi: vesinik 11H tuum koosneb ainult ühest prootonist. Vesiniku teist isotoopi 2 1H nimetatakse deuteeriumiks ja tema tuumas on lisaks ühele prootonile ka üks neutron. Vesiniku kolmas isotoop 31H on triitium, mille tuumas on üks prooton ja kaks neutronit. Triitiumi tuum on ebastabiilne, sest prootonid ja neutronid ei ole tasakaalus. Tuumaenergia Aatomituumad koosnevad prootonitest ja neutronitest, kuid tuuma mass on alati väiksem kui üksikute prootonite ja neutronite masside summa. Selle erinevuse (massidefekti) tekitab tuumaosakesi koos hoidev seoseenergia.
Põhjus on sama, miks elektronid on üle kogu aatomi laiali jagunenud? Vastuse annab mitteklassikaline füüsika KVANTMEHAANIKA Tähtsaim osa on ENERGIAL Kehtivad ranged reeglid Siin on oma osa mitmel füüsikalisel suurusel. : 1. Osake saab omada vaid teatud kindlaid energiaväärtusi (lubatud energiatasemed) 2. Ühel energiatasemel saab olla vaid kindel piiratud arv osakesi (igal tasemel on see arv erinev) 2.tuuma jõud prooton neutron, Kuna nukleonid on neutraalse värvilaenguga, siis ei saa nende vahel olla tugevat vastasmõju (kuigi prootonid ja neutronid koosnevad kvarkidest, ei saa nad vahetada omavahel gluuoneid). Nukleonide vahelist jõudu vahendav osake peab ise olema samuti neutraalse värvilaenguga, kuid koosnema siiski kvarkidest, millel on värvilaeng.umajõud Prooton, 3. nucleon, Nucleon on kollektiivse nime kaks baryons: neutron ja prooton füüsikas
Määramatuse relatsioon. Elektronile lainepikkuse omistamine ja tema asukoha sidumine seisevlaine maksimumidega tähendab, et asukoht on määratav lainepikkuse täpsuseni. (Heisenbergi määramatuse printsiip (relatsioon) seob osakese asukoha ruumis tema kiirusega, ajamomendi aga energiaga.) Pauli keeluprintsiip - Aatomis ei saa olla kaht elektroni, millel oleks samasugune kvantarvude nelik 21. Tuumafüüsika Põhimõisted: aatomituum, tuuma koostisosad, tuumajõud, seose-energia, massidefekt. Tuuma valem: massiarv, laenguarv, nende seos prootonite ja neutronite arvudega. Tuumaenergeetika: selle olemus, ahelreaktsioon, termotuumareaktsioon. Kiirguskaitse: radioaktiivne kiirgus ja seda iseloomustavad suurused; nende SI- ühikud. Aatomituum koosneb prootonitest ja neutronitest. Prooton on aatomituuma algosake (kr. esimene); Positiivse elementaarlaeguga ning massiarvuga 1 osakest nimetatakse prootoniks; Prootoniga ligikaudu sama massi omav laenguta (neutraalne) osake on neutron.
Määramatuse relatsioon. Elektronile lainepikkuse omistamine ja tema asukoha sidumine seisevlaine maksimumidega tähendab, et asukoht on määratav lainepikkuse täpsuseni. (Heisenbergi määramatuse printsiip (relatsioon) seob osakese asukoha ruumis tema kiirusega, ajamomendi aga energiaga.) Pauli keeluprintsiip - Aatomis ei saa olla kaht elektroni, millel oleks samasugune kvantarvude nelik 21. Tuumafüüsika Põhimõisted: aatomituum, tuuma koostisosad, tuumajõud, seose-energia, massidefekt. Tuuma valem: massiarv, laenguarv, nende seos prootonite ja neutronite arvudega. Tuumaenergeetika: selle olemus, ahelreaktsioon, termotuumareaktsioon. Kiirguskaitse: radioaktiivne kiirgus ja seda iseloomustavad suurused; nende SI- ühikud. Aatomituum koosneb prootonitest ja neutronitest. Prooton on aatomituuma algosake (kr. esimene); Positiivse elementaarlaeguga ning massiarvuga 1 osakest nimetatakse prootoniks; Prootoniga ligikaudu sama massi omav laenguta (neutraalne) osake on neutron.
Füüsikaline maailmapilt (II osa) Sissejuhatus......................................................................................................................2 3. Vastastikmõjud............................................................................................................ 2 3.1.Gravitatsiooniline vastastikmõju........................................................................... 3 3.2.Elektromagnetiline vastastikmõju..........................................................................4 3.3.Tugev ja nõrk vastastikmõju..................................................................................7 4. Jäävusseadused ja printsiibid....................................................................................... 8 4.1. Energia jäävus.......................................................................................................8 4.2. Impulsi jäävus ...............................................................