ETT0063 Tee-ehitus - RROJEKT Lähteandmed Variant nr 26 1 Tee klass Katendikonstruktsioon: AC 16 surf 2 AC 32 base BS 32 Killustik 0/31,5 (EVS-EN 13825) Stabiliseerimise projekteerimine Sisaldab vana freesipuru: -Põlevkivibituumeniga, % -Bituumeni, % -Penetratsioon,% 3 -Pehmenemistäpp Uus lisatav bituumen: -Lisatava emulsiooni bituumeni % -Baasbituumeni penetratsioon -Baasbituumeni pehmenemistäpp 4 Killustiku ja bituumeni lao asukoht 5 Muu mineraal materjali asukoht 6 Asfalditehase asukoht Ehitatava lõigu pikus 3km II cm 5 cm 7 cm 18 cm 22 BS % 48 % 6 % 60 0 C 50 % 55 183 0 C 37 PK 19 +km 3,5 PK 12 +km 1,5 PK 18 AC 16 surf (TAB 16 kulumiskihis) EVS 901-3 Enimkoormatud sõiduraja keskmine ööpäevane Täitematerjali omaduse
Vahur Aasamets KILLUSTIKALUSE EHITUS Õppeaines: TEE-EHITUSTÖÖD PROJEKT II Ehitusteaduskond Õpperühm: TEI-71/81 Juhendaja: lektor KAREL SAAR Tallinn 2013 SISUKORD 1. SISSEJUHATUS.............................................................................................................................3 2. RATSIONAALSE TÖÖ KIRJELDUS............................................................................................4 3. MATERJALIDE KASUTUS JA NÕUDED MATERJALI KVALITEEDI KOHTA.....................5 4. MATERJALI VAJADUS.................................................................................................................6 5. TEHNIKA JA INIMTÖÖJÕU VAJADUS......................................................................................7 6. TÖÖ MAKSUMUSE KALKULATSIOON JA AJALINE VAJADUS..........................................8 7. TÖÖDE KVALITEEDI KONTROLL........................
1. Muldkeha ehituse ettevalmistustööd. 2. Mullatööde mahtude arvutamine(nõlvus,kraavi ristlõige, kraavi pealtlaius, mullatööde maht). 3. Tee telje mahamärkimine 4. Piketaazi mahamärkimine 5. Muldkeha mahamärkimine ehitustöödel buldooseriga 6. Pinnasesse süvistamine buldooseritega 7. Pinnase teisaldamine buldooseritega 8. Pinnase puiste, jaotus, paigaldus buldooseritega 9. Süvendite rajamine, tasandamine buldooseritega 10. Astmete rajamine nõlvadele buldooseritega 11. Kraavide täisajamine buldooseritega 12. Pinnase tihendamine pneumorulliga 13. Pinnase tihendamine tapp-rulliga 14. Pinnase tihendamine vibrorulliga 15. Pinnase tihendamine kaevikutes 16. Pinnase tihendamine eritingimustes 17. Tekkida võivad probleemid tihendamisel 18. Pinnase paigutus muldes. 19. Muldkehas niiskuse muutus aastaringselt 20. Muldkeha aastaringne niiskustsükkel 21. Külmakerke tekkimist mõjutavad tegurid 22. Külmaohtlike pinnaste parendamise võimalused 23. Külmakindluse parandamise
1. Mis on teekatend, selle põhiliigid? On mitmekihiline looduslikust v sideainega töödeldud kivimaterjalist konstruktsioon mis võtab vastu ja hajutab liiklusvahendite rataste koormuse muldkeha pinnasele. Jaotatakse elastseteks ja jäikadeks ning edasi:1 Püsikatend: · monoliittsementbetoonist; · monteeritavast raud- või armobetoonist; · asfaltbetoonist. 2. Kergkatend:· kergasfaltbetoonist;· mustsegust; · sideainetega töödeldud killustikust, kruusast ja liivast. 3. Siirdekatend:· killustikust; · kruusast; · sideainetega töödeldud pinnastest. 2. Mis on asfalt, asfaltbetoon, asfaltbetoonsegu? Asfalt tuleb kreeka keelsest sõnast ,,asphaltos", s.t. mäevaik. Kitsamas mõttes on see 10-15% asfalteene sisaldav looduslik bituumen; laiemas tähenduses bituumeni ja mineraal-aine looduslik või tehislik segu. Esimene on soojendamisel sulav viskoosne pooltahke kuni tahke orgaaniliste ühendite segu, teine pooltahke kuni tahke matt või pigitaolist läikiv mustjaspruun
Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Ain Tulvi LOGISTIKA Õpik kutsekoolidele Tallinn 2013 Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Käesolev õppematerjal on valminud „Riikliku struktuurivahendite kasutamise strateegia 2007- 2013” ja sellest tuleneva rakenduskava „Inimressursi arendamine” alusel prioriteetse suuna „Elukestev õpe” meetme „Kutseõppe sisuline kaasajastamine ning kvaliteedi kindlustamine” programmi „Kutsehariduse sisuline arendamine 2008-2013” raames.
1) Nuivibraatorid. Allen Engineering Corporation nuivibraatorid Köik nuivibraatorid töötavad bensiinimootoriga. Kergeimal mudelil on mootor käepideme küljes. Keskmist tüüpi nuivibraatori mootor ripub rihmadega betoneerija seljas. Suurim, kahe nuiaga komplekt, saab töövoolu bensiinimootori körgsagedusgeneraatorist. Firma "Tremix" edasimüüja Eestis AS TALLMAC pakub erineva konstruktsiooniga nuivibraatoreid (tabel ): · täismehhaanilisi tüüp 1 mis koosneb mootorist, vahetükist, võllist ja vibraatornuiast. Mootoriga ühendatakse vahetüki abil erineva pikkusega võll ning erineva diameetriga tööorgan. · tüüp 2 - kergeid nuivibraatoreid, , mis koosneb mootorist ja tööorganist koos võlliga. Seda kasutatakse väikesemahuliste betoneerimistööde tegemisel · tüüp 3 - kõrgsagedusel töötav nuivibraator mis koosneb sagedusmuundurist ning tööorganist koosvoolujuhtmega. Sagedusmuundajast väljuva voolu sagedus on 200 Hz ja pinge 42 V. 20
1. Tehniline mehaanika ja ehitusstaatika (ei ole veel üle kontrollitud) 1.1. Koonduva tasapinnalise jõusüsteemi tasakaalutingimused. Sõrestiku varraste sisejõudude määramine sõlmede eraldamise meetodiga. Nullvarras. Tasakaalutingimused: graafiline jõuhulknurk on kinnine vektortingimus jõudude vektorsumma on 0 analüütiline RX=0 RY=0 => X = 0 M 1 = 0 => , kui X pole paralleelne Y-ga. Ja Y = 0 M 2 = 0 Analüütiline koonduva jõusüsteemi tasakaalutingimus on, et jõudude projektsioonide summa üheaegselt kahel mitteparalleelsel teljel võrdub nulliga ja momentide summa kahe punkti suhtes, mis ei asu samal sirgel jõudude koondumispunktiga võrdub nulliga Graafiline tasakaalutingimus on, et koonduv jõusüsteem on tasakaalus, kui nendele jõududele ehitatud jõuhulknurk on suletud, st. kui jõuhulknurga viimase vektori
EESTI MEREAKADEEMIA RAKENDUSMEHAANIKA ÕPPETOOL MTA 5298 RAKENDUSMEHAANIKA LOENGUMATERJAL Koostanud: dotsent I. Penkov TALLINN 2010 EESSÕNA Selleks, et aru saada kuidas see või teine masin töötab, peab teadma millistest osadest see koosneb ning kuidas need osad mõjutavad teineteist. Selleks aga, et taolist masinat konstrueerida tuleb arvutada ka iga seesolevat detaili. Masinaelementide arvutusmeetodid põhinevad tugevusõpetuse printsiipides, kus vaadeldakse konstruktsioonide jäikust, tugevust ja stabiilsust. Tuuakse esile arvutamise põhihüpoteesid ning detailide deformatsioonide sõltuvuse väliskoormustest ja elastsusparameetritest. Detailide pinguse analüüs lubab optimeerida konstruktsiooni massi, mõõdu ja ökonoomsuse parameetrite kaudu. Masinate projekteerimisel omab suurt tähtsust detailide materjali õige valik. Masinaehitusel kasutatavate materjalide nomenklatuur täieneb pidevalt, rakendatakse efekti
Kõik kommentaarid