Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Tšernobõli katastroofi tagajärjed (0)

1 Hindamata
Punktid

Lõik failist

Tšernobõli tuumakatastroofi tagajärjed
Tšernobõli tuumakatastroof leidis aset 26. aprillil 1986. Tšernobõli tuumaelektrijaamas läbi viidud katse tagajärjel kuumenes üle 4. energiaploki reaktor , mis ülekuumenemise tagajärjel plahvatas. Katse käigus reaktori võimsus esialgu kahanes hüppeliselt ning seejärel asus peale reaktori peatamist hüppeliselt kasvama. Reaktori võimsuse kasvades hakkasid Xe-135 isotoobid põlema kiiremini kui I-135 isotoobid lagunesid, mis omakorda suurendas reaktori võimsust. Sel hetkel suutis võimsuse automaatregulaator võimsuse kasvu

Tšernobõli katastroofi tagajärjed #1 Tšernobõli katastroofi tagajärjed #2
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2018-10-02 Kuupäev, millal dokument üles laeti
Allalaadimisi 9 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor getterlepp Õppematerjali autor
Tšernobõli tuumakatastroofi tagajärjed

Sarnased õppematerjalid

thumbnail
14
docx

Tšernoboli katastroof

Eidapere Kool Füüsika Kaspar Veldermann Tšornobõli katastroof Referaat Juhendaja: POLE Eidapere 2015 Tšornobõli katastroof Tšornobõli katastroof ehk Tšornobõli tuumakatastroof ehk Tšornobõli avarii (kasutatakse ka venepärast nimekuju Tšernobõl) oli avarii, mis leidis aset Tšornobõli tuumaelektrijaamas 51°23′22″ N 30°05′59″ E 26. aprillil 1986. Avarii oli rahvusvahelise tuumaintsidentide skaala järgi 7. taseme õnnetus. Tuumaelektrijaama 4. energiaploki reaktor plahvatas. Põhjusteks olid reaktori viimine ebastabiilsesse olekusse reaktori turvasüsteemide katsetamisel ning reaktori konstruktsiooni iseärasused.

Füüsika
thumbnail
8
docx

Tuumaelektrijaam

50ja Venemaa arvuga 32 reaktorit. Tänapäeval kasutatavate tuumaelektrijaamade võimsus ulatub 40 megavatist üle 1 gigavatti. Tuumaelektrijaamade eelisteks on see, et tekib vähe tahkeid jääkaineid, kulub vähe kütust ja ei pruugi saastada õhku. Jaamadega kaasnevad ka ohud. Suurtemateks ohtudeks on jääkained, mis on radioaktiivsed ja mis lagunevad pikkade aastate vältel. Sõja olukorras on tuumaelektrijaamad suureks sihtmärgiks just selle hävimise tagajärjel tekkiva katastroofi tõttu. Süürias ehitatud Al Kibari tuumareaktor, hävitati 2007. aastal Iisraelist Süüriale korraldatud õhurünnaku käigus. Jaamas tekkiva vea tõttu, mis vallandab radioaktiivsed ained loodusesse ja reostab suuri alasid väga pikaks ajaks. Jaamade olemasolu ja radioaktiivsete ainete käsitlemine on kaasa toonud ka tuumarelvade loomise, mis on sõjaliselt iga riigi õudusunenägu selle hävitusvõime tõttu. Tuumakütus ei kuulu taastuvate kütuste hulka, seega rikub

Füüsika
thumbnail
48
odt

Inimese ökoloogine jalajälg

ladustamisel arvestada nende ohutu hoidmiskohaga erakordselt pikaks ajaks. Tuumakütus ei kuulu taastuvate kütuste hulka. Seetõttu võib tuumaelektrijaamade kasutamine muuta ökosüsteemi energiabilanssi ning rikkuda ökoloogilist tasakaalu. Lisaks on veel oht, et need elekrtijaamad võivad plahvatada, mis põhjustaks suure hulga radioaktiivsuse lahti pääsemistja see võib omakorda põhjustada väärarengut nii ümbitsevas, kui looduses. Sellised juhtumid on näiteks Tšornobõli katastroof ja uuem on Fukushima tuumaõnnetus, mille tagajärgi on siiamaani tunda. 3.1.2.2.1. Tšornobõli katastroof ehk Tšornobõli tuumakatastroof ehk Tšornobõli avarii (kasutatakse ka venepärast nimekuju Tšernobõl) oli avarii, mis leidis aset Tšornobõli tuumaelektrijaamas 26. aprillil 1986. Avarii oli rahvusvahelise tuumaintsidentide skaala järgi 7. taseme õnnetus. Tuumaelektrijaama 4. energiaploki reaktor plahvatas. Põhjusteks olid reaktori viimine ebastabiilsesse olekusse

Ökoloogia



Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun